Return to search

Configuration of the Pleistocene Surface Beneath Cat Island, Mississippi and Implications for Barrier Island Formation and Evolution

The mechanism of Holocene barrier formation aids in determining island geomorphologic responses to modifying climatic processes of the surrounding environment. The geometry and composition of local antecedent topography plays a role in barrier formation by providing an elevated base, nucleus for sedimentation and local sediment supply. Investigation of barriers' subsurface geology provides insight into island formation and evolution. High-resolution shallow seismic data acquired in the island's nearshore zone and interior canals, correlated with existing drillcore data, reveal that Cat Island, MS is situated over an Oxygen Isotope Stage 3 Phase 3 paleochannel located between two topographic high-grounds of the Pleistocene surface. Beach ridge strandplain sets on Cat Island provide additional evidence supporting the island's formation over a relict depocenter. A new, 4-stage model for Cat Island development and evolution incorporating the influence of pre-existing topographic high-grounds and abundant local sediment supply provided by a backfilling fluvial channel is presented here.

Identiferoai:union.ndltd.org:uno.edu/oai:scholarworks.uno.edu:td-2242
Date17 December 2010
CreatorsRose, Kathryn
PublisherScholarWorks@UNO
Source SetsUniversity of New Orleans
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceUniversity of New Orleans Theses and Dissertations

Page generated in 0.0021 seconds