Model projections of future climate change require that coupled climate-vegetation models are developed and validated, i.e. these models should be able to reproduce past climate and vegetation change. Records of pollen deposited in lake bottoms and peat bogs can provide the information needed to validate these models. The aim of this thesis was i) to explore the modern relationships between pollen and vegetation in northern and temperate China and estimate pollen productivity of major plant taxa, and ii) to use the results of i) to produce the first reconstruction of plant cover in China over the last 10 000 years for the purpose of climate modelling. A study of the modern pollen-vegetation-climate relationships was performed in northwestern China (Paper I). Pollen productivity for 18 major plants of cultural landscapes in central-eastern China was estimated (Paper II). Based on a synthesis and evaluation of all existing estimates of pollen productivity in the study region, a standard dataset of pollen productivity for 31 plant taxa is proposed (Paper III). This dataset was used to achieve pollen-based REVEALS reconstructions of plant cover over the last 10 000 years in 35 regions of northern and temperate China (Paper IV). The major findings can be summarized as follows. Paper I: Annual precipitation (Pann) is the major climatic factor influencing pollen assemblages, followed by July precipitation (PJul). The shared effect of combinations of two climatic factors explains a larger portion of the variation in pollen data than individual variables. Paper II: Of the 16 reliable pollen productivities estimated, the estimates for 8 taxa are new, Castanea, Cupressaceae, Robinia/Sophora, Anthemis type/Aster type, Cannabis/Humulus, Caryophyllaceae, Cruciferae, and Galium type. Trees have in general larger pollen productivity than herbs. Paper III: Of the total 31 taxa for which estimates of pollen productivity are available in China, 13 taxa have more than 1 value. All or most of these values are similar for Artemisia, Cyperaceae, Larix, Quercus and Pinus. Eight taxa have very variable estimates. Paper IV: The REVEALS plant percentage-cover strongly differs from the pollen percentages, and they provide new important insights on past changes in plant composition and vegetation dynamics.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:lnu-59574 |
Date | January 2016 |
Creators | Li, Furong |
Publisher | Linnéuniversitetet, Institutionen för biologi och miljö (BOM), Växjö |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Linnaeus University Dissertations ; 271/2016 |
Page generated in 0.002 seconds