Return to search

Vector Intensity and Holography-Based Acoustic Source Characterization of a Military Jet Aircraft

The scientific community has employed multiple methods to analyze and describe the jet noise emanating from the turbulent exhaust flow from modern military aircraft engines, with the goal that better characterization of the sound radiation will improve noise reduction efforts. This thesis utilizes three different approaches to characterize the noise source region from a static F-22A Raptor. First, the energy flow field along planes near the aircraft and along an arc is measured using a multidimensional vector intensity probe. The resulting vector intensity maps give a clear indication of the directionality of the noise as a function of frequency at different engine conditions. A straightforward ray-tracing method show the utility of vector intensity measurements in source characterization by estimating the region from which the loudest portions of sound are emanating. Second, intensity reconstructions from near-field acoustical holography (NAH) provide an estimate of the three-dimensional radiated energy flow field. The sound field is shown to be dominated by mutually incoherent radiation lobes, which can be partially isolated by a partial decomposition method. Lastly, a wavepacket source model is optimized in light of amplitude-based NAH reconstructions near the jet axis. The wavepacket model successfully fits the NAH-reconstructed partial fields, especially at frequencies above 50 Hz, indicating that the source may be modeled by multiple wave packets at each frequency.

Identiferoai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-9120
Date01 July 2015
CreatorsStout, Trevor Alden
PublisherBYU ScholarsArchive
Source SetsBrigham Young University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations
Rightshttp://lib.byu.edu/about/copyright/

Page generated in 0.0017 seconds