The small ribosomal subunit gene of the Chaetomium thermophilum DSM 1495 is invaded by a nested intron at position mS1247, which is composed of a group I intron encoding a LAGLIDADG open reading frame interrupted by an internal group II intron. The first objective was to examine if splicing of the internal intron could reconstitute the coding regions and facilitate the expression of an active homing endonuclease. Using in vitro transcription assays, the group II intron was shown to self-splice only under high salt concentration. Both in vitro endonuclease and cleavage mapping assays suggested that the nested intron encodes an active homing endonuclease which cleaves near the intron insertion site. This composite arrangement hinted that the group II intron could be regulatory with regards to the expression of the homing endonuclease. Constructs were generated where the codon-optimized open reading frame was interrupted with group IIA1 or IIB introns. The concentration of the magnesium in the media sufficient for splicing was determined by the Reverse Transcriptase-Polymerase Chain Reaction analyses from the bacterial cells grown under various magnesium concentrations. Further, the in vivo endonuclease assay showed that magnesium chloride stimulated the expression of a functional protein but the addition of cobalt chloride to the growth media antagonized the expression. This study showed that the homing endonuclease expression in Escherichia coli can be regulated by manipulating the splicing efficiency of the group II introns which may have implications in genome engineering as potential ‘on/off switch’ for temporal regulation of homing endonuclease expression .
Another objective was to characterize native homing endonucleases, cytb.i3ORF and I-OmiI encoded within fungal mitochondrial DNAs, which were difficult to express and purify. For these, an alternative approach was used where two compatible plasmids, HEase.pET28b (+)-kanamycin and substrate.pUC57-chloramphenicol, based on the antibiotic markers were maintained in Escherichia coli BL21 (DE3). The in vivo endonuclease assays demonstrated that these homing endonucleases were able to cleave the substrate plasmids when expressed, leading to the loss of the antibiotic markers and thereby providing an indirect approach to screen for potential active homing endonucleases before one invests effort into optimizing protein overexpression and purification strategies. / October 2016
Identifer | oai:union.ndltd.org:MANITOBA/oai:mspace.lib.umanitoba.ca:1993/31680 |
Date | 23 May 2014 |
Creators | Guha, Tuhin |
Contributors | Hausner, Georg (Microbiology), Internal: Mark, Brian (Microbiology) Oresnik, Ivan (Microbiology) Stetefeld, Jörg (Chemistry) External: Zimmerly, Steven (Biological Sciences, University of Calgary) |
Publisher | PLoS ONE, Elsevier Inc., Springer, Elsevier Inc. |
Source Sets | University of Manitoba Canada |
Detected Language | English |
Page generated in 0.0021 seconds