Return to search

Comportamento Complexo na Experiência da Torneira Gotejante / Complex Behavior in Leaky Faucet Experiment

Montamos um aparato experimental para o estudo de comportamentos complexos na dinâmica de formação de gotas d\'água no bico de uma torneira. Desenvolvemos um sistema hidráulico em circuito fechado, e um sistema de aquisição de dados automatizado, que também controla a abertura da torneira (uma válvula de agulha). Utilizamos como parâmetro de controle a taxa de gotejamento estabelecida pela abertura da torneira. Os dados são séries de tempos {T n} entre gotas sucessivas para cada taxa de gotejamento. Utilizando diagramas de bifurcação, e reconstruções do espaço de fase com mapas de primeiro retomo Tn+1 x Tn , observamos duplicações de período, bifurcação de Hopf, crises interiores e de fronteira, comportamentos intermitentes, e movimentos quase-periódicos. Aplicamos anticontrole de caos, desestabilizando um ponto fixo estável com pulsos de ar comprimido sobre o bico da torneira. Também iniciamos o desenvolvimento de uma técnica para o controle de caos. Verificamos a existência de pontos de sela em vários atratores experimentais e, com a aplicação de dinâmica simbólica, observamos tangências homoclínicas associadas ao aparecimento de atratores de Hénon e bifurcações homoclínicas. Utilizando métodos de caracterização topológica, estabelecemos duas rotas para o caos envolvendo tangências homoclínicas, e mostramos que o súbito desaparecimento de um atrator caótico, em altas taxas de vazão, é devido a uma \"chaotic blue sky catastrophe\", apenas observada anteriormente num modelo de equações usadas por Van der Pol para simular a dinâmica cardíaca. / We assembled an experimental apparatus to study the dynamical complex behavior of water drop formation in a nipple faucet. We developed a closed hydrodynamic circuitry, and an automated acquisition data system, which also controls the faucet (a needle valve) opening. We have used as a control parameter the dripping rate set up by the faucet opening. For each dripping rate, the data are interdrop time series {Tn} between two successive drops. With the help of bifurcation diagrams, and reconstructed phase spaces in first return maps Tn+I x Tn, we were able to observe period doubling, Hopf bifurcation, interior and boundary crises, intermittent behaviors, and quasiperiodic movements. An anti-control of chaos was applied by perturbing a stable fixed point with pulses of compressed air on the nipple faucet. We also started the development of a technique to apply the control of chaos. The occurrence of saddle points was verified in some experimental attractors. By applying symbolic dynamics, we were able to observe homoclinic tangencies associated with the appearence of Hénon-like attractors and homoclinic bifurcations. By means of topological characterization, we established two routes to chaos related to homoclinic tangencies. We also observed, at high dripping rates, a sudden disappearance of a chaotic attractor due to a \"chaotic blue sky catastrophe\", just seen in a Van der Pol model used to simulate cardiac dynamics.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-11122013-145705
Date19 March 1999
CreatorsPinto, Reynaldo Daniel
ContributorsSartorelli, Jose Carlos
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeTese de Doutorado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0024 seconds