Return to search

Re-recognition of vehicles for enhanced insights on road traffic

This study investigates the performance of two keypoint detection algorithms, SIFTand LoFTR, for vehicle re-recognition on a 2+1 road in Täby, utilizing three differentmethods: proportion of matches, ”gates” based on the values of the features andSupport Vector Machines (SVM). Data was collected from four strategically placedcameras, with a subset of the data manually annotated and divided into training,validation, and testing sets to minimize overfitting and ensure generalization. TheF1-score was used as the primary metric to evaluate the performance of the variousmethods. Results indicate that LoFTR outperforms SIFT across all methods, with theSVM method demonstrating the best performance and adaptability. The findings havepractical implications in security, traffic management, and intelligent transportationsystems, and suggest directions for future research in real-time implementation andgeneralization across varied camera placements.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-330880
Date January 2023
CreatorsAsefaw, Aron
PublisherKTH, Skolan för teknikvetenskap (SCI)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-SCI-GRU ; 2023:151

Page generated in 0.0016 seconds