Return to search

Homotopy sheaves on manifolds and applications to spaces of smooth embeddings

This thesis explores connections between homotopy sheaves, manifold calculus of functors and operad theory. We argue that there is a deep overlap between these, and as evidence we give a new operadic description of the homotopy theoretical obstructions to deforming a smooth immersion into a smooth embedding. We then discuss an application which improves on some aspects of recent results of Arone-Turchin and Dwyer-Hess concerning spaces of long knots and high-dimensional variants. Along the way, we define fibrewise complete Segal spaces, a mild generalisation of Rezk's notion of complete Segal spaces. Also in the context of Segal spaces, we define right fibrations and prove a Grothendieck construction theorem for presheaves with values in spaces. Finally, we prove a result of independent interest which states that weakly k-reduced operads (those with contractible space of operations in arity j ? k) can be strictified when k = 0, 1.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:629411
Date January 2014
CreatorsBoavida de Brito, Pedro
PublisherUniversity of Aberdeen
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=215123

Page generated in 0.0018 seconds