Enterprise networks present very high value targets in the eyes of malicious
actors who seek to exfiltrate sensitive proprietary data, disrupt the operations of a particular organization, or leverage considerable computational and network resources to further their own illicit goals. For this reason, enterprise networks typically attract the most determined of attackers. These attackers are prone to using the most novel and difficult-to-detect approaches so that they may have a high probability of success and continue operating undetected. Many existing network security approaches that fall under the category of intrusion detection systems (IDS) and intrusion prevention systems (IPS) are able to detect classes of attacks that are well-known. While these approaches are effective for filtering out routine attacks in automated fashion, they are ill-suited for detecting the types of novel tactics and zero-day exploits that are increasingly used against the enterprise.
In this thesis, a solution is presented that augments existing security measures to provide enhanced coverage of novel attacks in conjunction with what is already provided by traditional IDS and IPS. The approach enables honeypots, a class of tech- nique that observes novel attacks by luring an attacker to perform malicious activity on a system having no production value, to be deployed in a turn-key fashion and at large scale on enterprise networks. In spite of the honeypot’s efficacy against tar- geted attacks, organizations can seldom afford to devote capital and IT manpower to integrating them into their security posture. Furthermore, misconfigured honeypots can actually weaken an organization’s security posture by giving the attacker a stag- ing ground on which to perform further attacks. A turn-key approach is needed for organizations to use honeypots to trap, observe, and mitigate novel targeted attacks.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/51842 |
Date | 22 May 2014 |
Creators | Brzeczko, Albert Walter |
Contributors | Copeland, John A. |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Language | en_US |
Detected Language | English |
Type | Dissertation |
Format | application/pdf |
Page generated in 0.0021 seconds