The unique combination of high specific strength and ductility in third generation advanced high-strength steels (3G-AHSSs) has garnered significant attention from top automotive steel industries. These materials are being considered as potential options for making lighter body components due to their strength and ability to tolerate thinner material cross-sections. However, galvanizing these steels through the continuous hot-dip galvanizing process is challenging, because the main alloying elements such as Mn, Si, Al, and Cr tend to selectively oxidize on the steel surface during the annealing process before being immersed in the galvanizing bath containing Zn(Al, Fe). The presence of these oxides extensively covering the substrate surface can negatively impact reactive wetting, coating adhesion, and overall coating quality. In this study, the selective oxidation kinetics and reactive wetting of a series of Fe-(2-10)Mn-(0.00/0.01/0.03)Sb (at. pct) were determined and a model was proposed for analyzing oxide growth during intercritical annealing prior to galvanizing. Annealing heat treatments were carried out at 676, 725, 775, and 825 ˚C for 60-480s holding time in a N2-5vol pct H2 process with a dew point of –10 ˚C. MnO was formed on all samples after annealing.
It was determined that the annealing conditions (temperature and isothermal holding time) affected the external oxide thickness and depth of the oxidation zone, which in turn influenced the MnO growth rate. With increasing the bulk Mn content of the alloy, the Mn elemental flux to the external surface increased, resulting in an increase in the oxidation parabolic rate constant. The average activation energy of internal oxidation for the Fe-2Mn, Fe-6Mn and Fe-10Mn alloys were determined to be 216±15 kJ/mol, 178 ± 18 kJ/mol and 152 ±10 kJ/mol, respectively, which are consistent with the activation energy of oxygen diffusion through MnO interfaces and the bulk diffusion of oxygen in austenite. Moreover, the average activation energy for external oxide
growth was ~113±18 kJ/mol, which was attributed to the diffusion of Mn cations along the grain boundaries of the external Mn oxides.
It was determined that micro addition of Sb to the Fe-Mn alloys led to a reduction in the oxidation rate constant, external oxide thickness, and internal oxidation zone, which was attributed to Sb segregation at both the external and internal oxide interface, resulting in the reduction of oxygen permeability. The reduction was more significant in the Fe-10Mn alloys, primarily attributable to the increased Sb segregation at the interfaces. The research showed that when the bulk Mn content increased, more antimony (Sb) segregated at both the internal and external oxide/substrate interface. As a result, the oxygen present at these interfaces decreased. This is attributed to the reduction of Sb solubility in α-Fe with increasing Mn and positive interactions between Sb and Mn. Advanced Atom Probe Tomography (APT) analysis confirmed that as more Sb segregated at the interfaces, the excess oxygen reduced due to site competition between O and Sb.
Additionally, Sb surface segregation kinetics for Fe-(0.01/0.03)Sb and Fe-2Mn-(0.01/0.03)Sb at.% were determined based on the modified Darken model and linear heating followed by isothermal annealing. After the annealing, Sb segregation was detected on the surface of both the Fe-xSb and Fe-2Mn-xSb alloys, which increase with increasing temperature and holding time. The segregation rate, as determined from the Darken curves, was higher in Fe-Sb alloys compared to Fe-2Mn-Sb alloys, which can be attributed to variations in the crystal structure and the density of defects within the metal matrix. Additionally, the activation energy for Sb diffusion in both Fe-Sb and Fe-2Mn-xSb alloys were determined to be approximately 193±18 kJ/mol closely aligns with the activation energy of Sb bulk diffusion in α-Fe.
Simulated galvanizing treatments were conducted on Fe-(2-10)Mn-(0.00/0.03)Sb at.% alloys. It was found that Sb segregation at the external/oxide interface resulted in a decrease in the size and thickness of the external oxide particles, which can facilitate better contact between the zinc bath and the substrate. Furthermore, it was found that Sb segregation at the interface between the external oxide and substrate led to a decrease in the stability of the interfacial region. This effect was attributed to an increase in the local atomic spacing near the interface, caused by Sb segregation. As a result, a local strain was observed near the interface. This localized strain significantly reduced the energy needed to separate the oxide from the metal matrix, contributing to decreased stability of the interfacial region. The higher bulk manganese (Mn) content led to increased segregation of antimony (Sb), resulting in a greater local strain within the interfacial region. These effects, in turn, enhanced the kinetics of the aluminothermic reduction reaction and assisted oxide lift-off. Furthermore, the closely packed Fe-Al intermetallics at the coating/steel interface increased as a result of adding Sb to the steel. In addition, no Sb segregation was observed at interfacial layer/metal interface. This absence of segregation can be attributed to the dissolution of segregated Sb into the liquid zinc. It was determined that Sb, which segregated at the external oxide/substrate interface during annealing, dissolved into the zinc bath and disrupted its bond with iron. This disruption occurred due to the higher electronegativity of Sb compared to Fe with Zinc, as well as the sufficient solubility of Sb in liquid zinc. / Thesis / Doctor of Science (PhD) / The unique combination of high specific strength and ductility exhibited by third-generation advanced high-strength steels has captured the attention of automotive industries. However, challenges arise when attempting to galvanize these steels through continuous hot-dip galvanizing processes. The selective oxidation of alloying elements during annealing can have detrimental effects on reactive wetting and coating adhesion. The objective of this research was to improve the coating quality of Mn-containing steels by introducing micro-additions of Sb. Sb segregation to the surface and interfaces began to occur during annealing. Segregated Sb resulted in a reduction of the oxidation rate. Sb segregation at oxide interfaces also contributed to decreased oxygen permeability. Upon immersion in the liquid zinc bath, both Sb and Fe dissolved into the zinc, leading to the formation of an interfacial layer on the surface, which indicates successful reactive wetting. The findings of this research provide valuable insights for improving galvanizing processes and enhancing coating quality, specifically in the context of third-generation advanced high-strength steels.
Identifer | oai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/28876 |
Date | January 2023 |
Creators | Pourbahari, Bita |
Contributors | McDermid, Joseph R., Materials Science and Engineering |
Source Sets | McMaster University |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0029 seconds