Antibiotic use is a vital method for the treatment of most diseases involving bacterial infections. Unfortunately, in certain cases these agents are not effective in treatments against diseases for either some limitation in antibiotic usage because of the side effects or some distribution problems caused by physiological or pathological barriers in the body.
Such problems are thought to be minimized by development of controlled release systems which involve implantation of antibiotic loaded polymeric systems directly to the site of infection. Present study involves Vancomycin, a very strong antibiotic with a wide spectrum of activity, and two biocompatible and biodegradable polymers, poly(3-hydroxybutyrate-co-3-valerate) PHBV and poly(L-lactide-co-glycolide) PLGA, in the construction of rod shaped controlled release systems designed for the aim of local treatment of osteomyelitis.
Vancomycin carrying rods of either PHBV 8 or PLGA (50:50) polymers were prepared by the use of cold paste and hot extrusion methods in two different loading ratios (2:1 and 1:1 P:V). In situ release kinetics of each type of rod was determined by spectrophotometric measurement of vancomycin concentration. For determination of drug content of the controlled release rods initially and at the end of the release experiments, extraction and IR (infrared) studies were carried out. The efficacy of the system was measured in vitro on the bacterial strain, B. subtilis. Characterization of the rods was made by the use of stereomicroscopy and SEM (scanning electron microscopy).
In situ release results of the controlled Vancomycin release formulations revealed that for both polymer types, hot extrusion process enabled the formation of a more compact system that provided slower release of the agent compared to the cold paste method. With the combined effect of variable loading proportion and polymer type the most prolonged release was obtained by PHBV rods having 2:1, P:V, ratio (prepared by hot extrusion method). In general, the release kinetics from the rods obeyed the Fickian diffusion kinetics except for PLGA rods prepared by cold paste method with 1:1 and 2:1 (P:V) loading ratios, which had a first order rate of drug release. According to in vitro bioactivity assays, all the groups effectively inhibited bacterial growth with the first day release samples. On the seventh day, however, only two cold paste samples, PHBV:Vancomycin 1:1 and PLGA:Vancomycin 1:1 had drug content barely sufficient for MEC while the others were in the ineffective range. The IR and grinding-extraction studies proved that Vancomycin was still present within the rods after a ten day release period.
The PHBV rods with 2:1 (P:V) ratio prepared by hot extrusion method seem to be the most promising drug delivery system in terms of providing prolonged release as an implantable drug delivery system for the treatment of bacterial infections of the bone, namely osteomyelitis.
Identifer | oai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12605882/index.pdf |
Date | 01 February 2005 |
Creators | Tagit, Oya |
Contributors | Hasirci, Vasif Nejat |
Publisher | METU |
Source Sets | Middle East Technical Univ. |
Language | English |
Detected Language | English |
Type | M.S. Thesis |
Format | text/pdf |
Rights | To liberate the content for public access |
Page generated in 0.0021 seconds