BECN1 is a haploinsufficient tumor suppressor gene that is monoallelically deleted or epigenetically silenced in many human cancers. In breast cancer, 40% of tumors exhibit monoallelic deletion of Beclin 1. Additionally, low Beclin 1 mRNA expression is observed in aggressive breast cancer subtypes and reduced expression is an independent predictor of overall patient survival. The role of Beclin 1 in cancer has almost exclusively been attributed to its function in autophagy. However, our lab demonstrated an alternative role for Beclin 1 in the regulation of growth factor receptor signaling that could contribute to cancer. The goal of my thesis project was to investigate the molecular basis by which Beclin 1 regulates breast tumor growth and progression in vivo.
Using in vivo models, I discovered that Beclin 1 promotes endosomal recruitment of hepatocyte growth factor tyrosine kinase substrate (HRS), which is necessary for sorting receptors to intraluminal vesicles for signal silencing and degradation. Beclin 1-dependent recruitment of HRS results in the autophagy-independent regulation of endocytic trafficking and degradation of the epidermal growth factor (EGFR) and transferrin (TFR1) receptors. When Beclin 1 expression is low, endosomal HRS recruitment is reduced and receptor function is sustained to drive tumor proliferation. An autophagy-independent role for Beclin 1 in regulating tumor metabolism was also observed. Collectively, my results demonstrate a novel role for Beclin 1 in impeding tumor growth by coordinating the regulation of growth promoting receptors. These data provide an explanation for how low levels of Beclin 1 facilitate tumor proliferation and contribute to poor cancer outcomes, independently of autophagy.
Identifer | oai:union.ndltd.org:umassmed.edu/oai:escholarship.umassmed.edu:gsbs_diss-2047 |
Date | 27 June 2019 |
Creators | Matthew-Onabanjo, Asia N. |
Publisher | eScholarship@UMMS |
Source Sets | University of Massachusetts Medical School |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | GSBS Dissertations and Theses |
Rights | Licensed under a Creative Commons license, http://creativecommons.org/licenses/by/4.0/ |
Page generated in 0.0024 seconds