The use of hand gestures provides an attractive alternative to cumbersome interface devices such as keyboard, mouse, joystick, etc. Hand tracking has a great potential as a tool for better human-computer interaction by means of communication in a more natural and articulate way. This has motivated a very active research area concerned with computer vision-based analysis and interpretation of hand gestures and hand tracking.
In this study, a real-time hand tracking system is developed. Mainly, it is image-based hand tracking and based on 2D image information. For separation and identification of finger parts, coloured markers are used. In order to obtain 3D tracking, a stereo vision approach is used where third dimension is obtained by depth information. In order to see results in 3D, a 3D hand model is developed and Java 3D is used as the 3D environment.
Tracking is tested on two different types of camera: a cheap USB web camera and Sony FCB-IX47AP camera, connected to the Matrox Meteor frame grabber with a standard Intel Pentium based personal computer. Coding is done by Borland C++ Builder 6.0 and Intel Image Processing and Open Source Computer Vision (OpenCV) library are used as well. For both camera types, tracking is found to be robust and efficient where hand tracking at ~8 fps could be achieved.
Although the current progress is encouraging, further theoretical as well as computational advances are needed for this highly complex task of hand tracking.
Identifer | oai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12606461/index.pdf |
Date | 01 September 2005 |
Creators | Tokatli, Aykut |
Contributors | Halici, Ugur |
Publisher | METU |
Source Sets | Middle East Technical Univ. |
Language | English |
Detected Language | English |
Type | M.S. Thesis |
Format | text/pdf |
Rights | To liberate the content for public access |
Page generated in 0.002 seconds