Return to search

3D POSE ESTIMATION IN THE CONTEXT OF GRIP POSITION FOR PHRI

For human-robot interaction with the intent to grip a human arm, it is necessary that the ideal gripping location can be identified. In this work, the gripping location is situated on the arm and thus it can be extracted using the position of the wrist and elbow joints. To achieve this human pose estimation is proposed as there exist robust methods that work both in and outside of lab environments. One such example is OpenPose which thanks to the COCO and MPII datasets has recorded impressive results in a variety of different scenarios in real-time. However, most of the images in these datasets are taken from a camera mounted at chest height on people that for the majority of the images are oriented upright. This presents the potential problem that prone humans which are the primary focus of this project can not be detected. Especially if seen from an angle that makes the human appear upside down in the camera frame. To remedy this two different approaches were tested, both aimed at creating a rotation-invariant 2D pose estimation method. The first method rotates the COCO training data in an attempt to create a model that can find humans regardless of orientation in the image. The second approach adds a RotationNet as a preprocessing step to correctly orient the images so that OpenPose can be used to estimate the 2D pose before rotating back the resulting skeletons.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:mdh-55166
Date January 2021
CreatorsNorman, Jacob
PublisherMälardalens högskola, Akademin för innovation, design och teknik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0018 seconds