Doctor of Philosophy / Department of Industrial & Manufacturing Systems Engineering / Chih-Hang Wu / The topic of infectious disease epidemics has recently attracted substantial attentions in research communities and it has been shown that the changes of human behaviors have significant impacts on the dynamics of disease transmission. However, the study and understanding of human reactions into spread of infectious disease are still in the very beginning phase and how human behaviors change during the spread of infectious disease has not been systematically investigated. Moreover, the study of human behaviors includes not only various enforced measures by public authorities such as school closure, quarantine, vaccination, etc, but also the spontaneous self-protective actions which are triggered by risk perception and fear of diseases. Hence, the goal of this research is to study the impacts of human behaviors to the epidemic from these two perspectives: spontaneous behavioral changes and public intervention strategies.
For the sake of studying spontaneous changes of human behaviors, this research first time applied evolutionary spatial game into the study of human reactions to the spread of infectious disease. This method integrated contact structures and epidemics information into the individuals’ decision processes, by adding two different types of information into the payoff functions: the local information and global information. The new method would not only advance the field of game theory, but also the field of epidemiology. In addition, this method was also applied to a classic compartmental dynamic system which is a widely used model for studying the disease transmission. With extensive numerical studies, the results first proved the consistency of two models for the sake of validating the effectiveness of the spatial evolutionary game. Then the impacts of changes of human behaviors to the dynamics of disease transmission and how information impacts human behaviors were discussed temporally and spatially.
In addition to the spontaneous behavioral changes, the corresponding intervention strategies by policy-makers played the key role in process of mitigating the spread of infectious disease. For the purpose of minimizing the total lost, including the social costs and number of infected individuals, the intervention strategies should be optimized. Sensitivity analysis, stability analysis, bifurcation analysis, and optimal control methods are possible tools to understand the effects of different combination of intervention strategies or even find an appropriate policy to mitigate the disease transmission. One zoonotic disease, named Zoonotic Visceral Leishmaniasis (ZVL), was studied by adopting different methods and assumptions. Particularly, a special case, backward bifurcation, was discussed for the transmission of ZVL.
Last but not least, the methodology and modeling framework used in this dissertation can be expanded to other disease situations and intervention applications, and have a broad impact to the research area related to mathematical modeling, epidemiology, decision-making processes, and industrial engineering. The further studies can combine the changes of human behaviors and intervention strategies by policy-makers so as to seek an optimal information dissemination to minimize the social costs and the number of infected individuals. If successful, this research should aid policy-makers by improving communication between them and the public, by directing educational efforts, and by predicting public response to infectious diseases and new risk management strategies (regulations, vaccination, quarantine, etc.).
Identifer | oai:union.ndltd.org:KSU/oai:krex.k-state.edu:2097/35100 |
Date | January 1900 |
Creators | Zhao, Songnian |
Publisher | Kansas State University |
Source Sets | K-State Research Exchange |
Language | en_US |
Detected Language | English |
Type | Dissertation |
Page generated in 0.002 seconds