A disseminação do uso de robôs na sociedade moderna é uma realidade. Do começo restrito às operações fabris como pintura e soldagem, até o início de seu uso nas residências, apenas algumas décadas se passaram. A robótica social é uma área de pesquisa que visa desenvolver modelos para que a interação direta de robôs com seres humanos ocorra de forma natural. Um dos fatores que compromete a rápida evolução da robótica social é a dificuldade em integrar sistemas cognitivos e robóticos, principalmente devido ao volume e complexidade da informação produzida por um mundo caótico repleto de dados sensoriais. Além disso, a existência de múltiplas configurações de robôs, com arquiteturas e interfaces distintas, dificulta a verificação e repetibilidade dos experimentos realizados pelos diversos grupos de pesquisa. Esta tese contribui para a evolução da robótica social ao definir uma arquitetura, denominada Cognitive Model Development Environment (CMDE) que simplifica a conexão entre sistemas cognitivos e robóticos. Essa conexão é formalizada com uma ontologia, denominada OntPercept, que modela a percepção do ambiente a partir de informações sensoriais captadas pelos sensores presentes no agente robótico. Nos últimos anos, diversas ontologias foram propostas para aplicações robóticas, mas elas não são genéricas o suficiente para atender completamente às necessidades das áreas de robótica e automação. A formalização oferecida pela OntPercept facilita o desenvolvimento, a reprodução e a comparação de experimentos associados a robótica social. A validação do sistema proposto ocorre com suporte do simulador Robot House Simulator (RHS), que fornece um ambiente onde, o agente robótico e o personagem humano podem interagir socialmente com níveis crescentes de processamento cognitivo. A proposta da CMDE viabiliza a utilização de qualquer sistema cognitivo, em particular, o experimento elaborado para validação desta pesquisa utiliza Soar como arquitetura cognitiva. Em conjunto, os elementos: arquitetura CMDE, ontologia OntPercept e simulador RHS, todos disponibilizados livremente no GitHub, estabelecem um ambiente completo que propiciam o desenvolvimento de experimentos envolvendo sistemas cognitivos dirigidos para a área de robótica social. / The use of robots in modern society is a reality. From the beginning restricted to the manufacturing operations like painting and welding, until the beginning of its use in the residences, only a few decades have passed. Social robotics is an area that aims to develop models so that the direct interaction of robots with humans occurs naturally. One of the factors that compromises the rapid evolution of social robotics is the difficulty in integrating cognitive and robotic systems, mainly due to the volume and complexity of the information produced by a chaotic world full of sensory data. In addition, the existence of multiple configurations of robots, with different architectures and interfaces, makes it difficult to verify and repeat the experiments performed by the different research groups. This research contributes to the evolution of social robotics by defining an architecture, called Cognitive Model Development Environment (CMDE), which simplifies the connection between cognitive and robotic systems. This connection is formalized with an ontology, called OntPercept, which models the perception of the environment from the sensory information captured by the sensors present in the robotic agent. In recent years, several ontologies have been proposed for robotic applications, but they are not generic enough to fully address the needs of robotics and automation. The formalization offered by OntPercept facilitates the development, reproduction and comparison of experiments associated with social robotics. The validation of the proposed system occurs with support of the Robot House Simulator (RHS), which provides an environment where the robotic agent and the human character can interact socially with increasing levels of cognitive processing. All together, the elements: CMDE architecture, OntPercept ontology and RHS simulator, all freely available in GitHub, establish a complete environment that allows the dev
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-18102018-103203 |
Date | 01 August 2018 |
Creators | Helio Azevedo |
Contributors | Roseli Aparecida Francelin Romero, Paulo Jorge Sequeira Gonçalves, Ricardo Ribeiro Gudwin, Fernando Santos Osório |
Publisher | Universidade de São Paulo, Ciências da Computação e Matemática Computacional, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0021 seconds