Return to search

Ankle torque estimation for lower-limb robotic rehabilitation / Estimativa de torque no tornozelo para reabilitação robótica de membros inferiores

In robotic rehabilitation therapies, knowledge of human joint torques is important for patient safety, to provide a reliable data for clinical assessment and to increase control performance of the device, nevertheless, its measurement can be complex or have a highcost implementation. The most of techniques for torque estimation have been developed for upper limb robotic rehabilitation devices, in addition, they typically require detailed anthropometric and musculoskeletal models. In this dissertation is presented the ankle torque estimation for the Anklebot robot, the estimation uses an ankle/Anklebot dynamic model that consider the ankle joint angular displacement and velocity measurement, its mechanical impedance parameters are obtained through a second-order modeled mechanical impedance of the ankle and an identification of frictional and gravitational torques. Three approaches for the ankle torque estimation were proposed to be implemented in the Anklebot robot, the Generalized Momentum, the Kalman filter and finally a combination of both the above mentioned approaches. The validation of such approaches was developed first on a physical mockup configured to reproduce the human ankle joint movement, by assessing its performances, the Kalman filter approach was selected to be implemented on a voluntary subject. A set of experiments were performed considering the physical activity that the subject may realize when interacting with the Anklebot, the developed ankle torque estimation proved to be successful for passive torque and in most of the proposed scenarios where active torque is performed. / Em terapias de reabilitação robótica, o conhecimento dos torques da articulação humana é importante para a segurança do paciente, para fornecer dados confiáveis na avaliação clínica e aumentar o desempenho de controle do dispositivo, no entanto, sua medição pode ser complexa ou costoso de implementar. A maioria das técnicas de estimativa de torque tem sido desenvolvidas para dispositivos de reabilitação robótica de membros superiores, além disso, eles normalmente requerem modelos antropométricos e musculoesqueléticos detalhados. Nesta dissertação é apresentada a estimativa do torque do tornozelo no robô Anklebot, a estimação utiliza um modelo dinâmico tornozelo + Anklebot o qual considera a medição da posição e velocidade angular do tornozelo, os parametros de impedancia mecânica do tornozelo são obtidos por meio de um modelo simples de segunda ordem e são identificados os torques gravitacionais e de atrito. Três abordagens para a estimativa de torque de tornozelo foram propostas para serem implementadas, o momento generalizado, o filtro de Kalman e, finalmente, uma abordagem que combina tanto o momento generalizado e o filtro de Kalman. A validação de tais abordagens foi desenvolvida primeiro em um mock-up físico configurado para reproduzir o movimento articular do tornozelo humano, avaliando seus desempenhos. A segunda abordagem proposta foi selecionada para ser implementada em um usuário voluntário. Um conjunto de experimentos foi realizado considerando a atividade física que o sujeito pode realizar ao interagir com o Anklebot, a estimativa desenvolvida de torque de tornozelo demostrou ser bem sucedida para o torque passivo e na maioria dos cenários propostos onde o torque ativo é realizado.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-08102018-164536
Date15 June 2018
CreatorsJonathan Campo Jaimes
ContributorsAdriano Almeida Gonçalves Siqueira, Valdir Grassi Junior, Álvaro David Orjuela Cañon
PublisherUniversidade de São Paulo, Engenharia Mecânica, USP, BR
Source SetsIBICT Brazilian ETDs
LanguageEnglish
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0023 seconds