Return to search

A Macroergonomics Path to Human-centered, Adaptive Buildings

Human-building relationships impact everyone in industrialized society. We spend approximately 90% of our lives in the built environment. Buildings have a large impact on the environment; consuming 20% of worldwide energy (40% of U.S. energy) annually. Buildings are complex systems, yet architecture, engineering, and construction (AEC) professionals often perform their work without considering the human factors that affect the operational performance of the building system. The AEC industry currently employs a linear design and delivery approach, lacking verified performance standards and real-time feedback once a certificate of occupancy is issued. We rely on static monthly utility bills that lag and mask occupant behavior. We rely on lawsuits and anecdotal business development trends as our feedback mechanisms for the evaluation of a complex, system-based product. The omission of human factors in the design and delivery of high performance building systems creates risk for the AEC industry. Neglecting an iterative, human-centered design approach inhibits our ability to relinquish the building industry's position as the top energy consuming sector. Therefore, this research aims to explore, identify, and propose optimizations to critical human-building relationships in the multifamily housing system.

This work is grounded in Sociotechnical Systems theory (STS). STS provides the most appropriate theoretical construct for this work because 1) human-building interactions (HBI) are fundamentally, human-technology interactions, 2) understanding HBI will improve total system performance, and 3) the interrelationships among human-building subsystems and the potential for interventions to effect the dynamics of the system are not currently well understood. STS was developed in the 1940's as a result of work system design changes with coal mining in the United Kingdom. STS consists of four subsystems and provides a theoretical framework to approach the joint optimization of complex social and technical problems. In the context of this work, multidisciplinary approaches were leveraged from human factors engineering and building construction to explore relationships among the four STS subsystems. An exploratory case study transformed the work from theoretical construct toward an applied STS model. Data are gathered from each STS subsystem using a mixed-methods research design. Methods include Systematic Review (SR), a descriptive case study of zero energy housing, and the Macroergonomics Analysis and Design (MEAD) of three builder-developers. This work contributes to bridging the bodies of knowledge between human factors engineering and the AEC industry. An output of this work is a framework and work system recommendations to produce human-centered, adaptive buildings.

This work specifically examined the system inputs and outputs of multifamily housing in the United States. The findings are supportive of existing scientific society, government, and industry standards and goals. Relevant standards and goals include the Human Factors and Ergonomics Society (HFES) Macroergonomics and Environmental Design Technical Groups, International Energy Agency's Energy in Buildings ANNEX 79 Occupant Behavior-Centric Building Design and Operation, the U.S. Department of Energy's Building America Research to Market Plan and zero energy building goals of the American Society of Heating Refrigeration and Air-Conditioning Engineers (ASHRAE). / Doctor of Philosophy / We spend approximately 90% of our lives in the built environment. Buildings have a large impact on the environment; consuming 20% of worldwide energy (40% of U.S. energy) annually. As we work to reduce energy use in buildings, new challenges have emerged. As buildings become more complex, the architecture, engineering, and construction industry (AEC) must adapt. The industry historically employs a linear design and delivery approach, lacking verified performance standards and real-time feedback once a certificate of occupancy is issued. We rely on static monthly utility bills that lag and mask occupant behavior. We rely on lawsuits and anecdotal business development trends as our feedback mechanisms for the evaluation of a complex, system-based product. The omission of human factors in the design and delivery of high-performance building systems creates risk for the industry and occupants. To better understand that risk, a comparative analysis of zero energy housing explores the relationship between humans and the buildings of the future. A second case study explores the work systems of builder-developers by using the Macroergonomic Analysis and Design method. The work reports risks and barriers in the system, as well as opportunities to create human-centered, adaptive housing. Specifically, this project enhances our understanding of 1) high performance housing, 2) their occupants, and 3) the builder-developers that produce high performance housing.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/102751
Date26 September 2019
CreatorsAgee, Philip
ContributorsIndustrial and Systems Engineering, Kleiner, Brian M., Gabbard, Joseph L., Paige, Frederick, McCoy, Andrew P., Reichard, Georg
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeDissertation
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0023 seconds