Improvements in robot autonomy are changing human-robot interaction from low-level manipulation to high-level task-based collaboration. When a robot can independently and autonomously executes tasks, a human in a human-robot team acts as a collaborator or task supervisor instead of a tele-operator. When applying this to planning paths for a robot's motion, it is very important that the supervisor's qualitative intent is translated into aquantitative model so that the robot can produce a desirable consequence. In robotic path planning, algorithms can transform a human's qualitative requirement into a robot's quantitative model so that the robot behavior satisfies the human's intent. In particular, algorithms can be created that allow a human to express multi-objective and topological preferences, and can be built to use verbal communication. This dissertation presents a series of robot motion-planning algorithms, each of which is designed to support some aspect of a human's intent. Specifically, we present algorithms for the following problems: planning with a human-motion constraint, planning with a topological requirement, planning with multiple objectives, and creating models of constraints, requirements, and objectives from verbal instructions. These algorithms create a set of robot behaviors that support flexible decision-making over a range of complex path-planning tasks.
Identifer | oai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-7267 |
Date | 01 August 2016 |
Creators | Yi, Daqing |
Publisher | BYU ScholarsArchive |
Source Sets | Brigham Young University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | All Theses and Dissertations |
Rights | http://lib.byu.edu/about/copyright/ |
Page generated in 0.002 seconds