Return to search

Regulation of neuronal calcium homeostasis in Huntington's

Indiana University-Purdue University Indianapolis (IUPUI) / Huntington’s Disease (HD) is an inherited, autosomal dominant, neurodegenerative disorder. There is no cure for HD and the existing therapies only alleviate HD symptoms without eliminating the cause of this neuropathology. HD is linked to a mutation in the huntingtin gene, which results in an elongation of the poly-glutamine stretch in the huntingtin protein (Htt). A major hypothesis is that mutant Htt (mHtt) leads to aberrant Ca2+ homeostasis in affected neurons. This may be caused by increased Ca2+ influx into the cell via the N-methyl-Daspartate (NMDA)-subtype of glutamate receptors. The contribution of two major Ca2+ removal mechanisms, mitochondria and plasmalemmal Na+/Ca2+ exchangers (NCX), in neuronal injury in HD remains unclear. We investigated Ca2+ uptake capacity in isolated synaptic (neuronal) and nonsynaptic mitochondria from the YAC128 mouse model of HD. We found that both Htt and mHtt bind to brain mitochondria and the amount of mitochondriabound mHtt correlates with increased mitochondrial Ca2+ uptake capacity. Mitochondrial Ca2+ accumulation was not impaired in striatal neurons from YAC128 mice. We also found that expression of the NCX1 isoform is increased with age in striatum from YAC128 mice compared to striatum from wild-type mice. Interestingly, mHtt and Htt bind to the NCX3 isoform but not to NCX1. NCX3 expression remains unchanged.
To further investigate Ca2+ homeostasis modulation, we examined the role of collapsin response mediator protein 2 (CRMP2) in wild-type neurons. CRMP2 is viewed as an axon guidance protein, but has been found to be involved in Ca2+ signaling. We found that CRMP2 interacts with NMDA receptors (NMDAR) and disrupting this interaction decreases NMDAR activity. CRMP2 also interacts with and regulates NCX3, resulting in NCX3 internalization and decreased activity. Augmented mitochondrial Ca2+ uptake capacity and an increased expression of NCX1 in the presence of mHtt suggest a compensatory reaction in response to increased Ca2+ influx into the cell. The role of NCX warrants further investigation in HD. The novel interactions of CRMP2 with NMDAR and NCX3 provide additional insight into the complexity of Ca2+ homeostasis regulation in neurons and may also be important in HD neuropathology.

Identiferoai:union.ndltd.org:IUPUI/oai:scholarworks.iupui.edu:1805/10975
Date28 July 2015
CreatorsPellman, Jessica J.
ContributorsBrustovetsky, Nickolay, Cummins, Theodore R., Jerde, Travis J., Khanna, Rajesh, Vasko, Michael R.
Source SetsIndiana University-Purdue University Indianapolis
Languageen_US
Detected LanguageEnglish
TypeDissertation

Page generated in 0.0022 seconds