Return to search

Seismic Performance Evaluation of Industrial and Nuclear Reinforced Concrete Shear Walls: Hybrid Simulation Tests and Data-Driven Models

Low-aspect-ratio reinforced concrete (RC) shear walls, characterized by height-to-length ratios of less than two, have been widely used as a seismic force-resisting system (SFRS) in a wide array of structures, ranging from conventional buildings to critical infrastructure systems such as nuclear facilities. Despite their extensive applications, recent research has brought to light the inadequate understanding of their seismic performance, primarily attributed to the intricate nonlinear flexure-shear interaction behaviour unique to these walls. In this respect, the current research dissertation aims to bridge this knowledge gap by conducting a comprehensive evaluation to quantify the seismic performance of low-aspect-ratio RC shear walls when used in different applications.
Chapter 2 focuses on low-aspect-ratio RC shear walls that are employed in residential and industrial structures. Considering their significance, the seismic response modification factors of such walls, as defined in various standards, are thoroughly examined and evaluated utilizing the FEMA P695 methodology. The analysis revealed potential deficiencies in the current code-based recommendations for response modification factors. Consequently, a novel set of response modification factors, capable of mitigating the seismic risk of collapse under the maximum considered earthquake, is proposed. Such proposed values can be integrated into the forthcoming revisions of relevant building codes and design standards.
While the FEMA P695 methodology offers a comprehensive approach to assessing building seismic performance factors, its practical implementation is associated with many challenges for practicing engineers. Specifically, the methodology heavily relies on resource-intensive and time-consuming incremental dynamic analyses, making it less feasible for routine engineering practices. To enhance its practicality, a data-driven framework is developed in Chapter 3, circumventing the need for such demanding analyses. This framework provides genetic programming-based expressions capable of producing accurate predictions of the median collapse intensities—a key metric in the acceptance criteria of the FEMA P695 methodology, for different structural systems. To demonstrate its use, the developed framework is operationalized to low-aspect-ratio RC shear walls and the predictive expression is evaluated considering several statistical and structural parameters, which showed its adequacy in predicting the median collapse intensities of such walls. Furthermore, the adaptability of this framework is showcased, highlighting its applicability across various SFRSs.
Chapters 4 and 5 tackle the scarcity of experimental assessments pertaining to the seismic performance of low-aspect-ratio RC walls in nuclear facilities. The seismic hybrid simulation testing technique is employed herein to merge the simplicity of numerical simulations with the efficiency of experimental tests. Hybrid simulation can overcome obstacles related to physical specimen sizes, limited actuator capacities, and space constraints in most laboratories. In these two chapters, the experimental program delves into evaluating the seismic performance of three two-storey low-aspect-ratio nuclear RC walls under different earthquake levels, including operational, design, and beyond-design-level scenarios. Diverse design configurations, including the use of increased thickness boundary elements and different materials (i.e., normal- and high-strength reinforcement), are considered in such walls to provide a comprehensive understanding of several structural parameters and economic metrics. Key structural parameters, such as the force-displacement responses, multi-storey effects, lateral and rotational stiffnesses, ductility capacities, displacement components, rebar strains, crack patterns and damage sequences, are all investigated to provide direct comparisons between the walls in terms of their seismic performances. Additionally, economic metrics, including the total rebar weights, overall construction costs and the expected seismic repair costs, are considered in order to evaluate the seismic performance of the walls considering an economic perspective. The findings of this experimental investigation are expected to inform future nuclear design standards by enhancing the resilience and safety of their structures incorporating low-aspect-ratio RC shear walls. / Thesis / Doctor of Philosophy (PhD)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/29557
Date January 2024
CreatorsAkl, Ahmed
ContributorsEzzeldin, Mohamed, Civil Engineering
Source SetsMcMaster University
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0022 seconds