Fiber reinforcement is being widely used in concrete tunnel linings these days. Using fiber reinforcement can save not only cost, but also labor and time spent on construction. However, many owners hesitate to incorporate fiber reinforcement in tunnel lining due to lack of experience with and knowledge of the behavior of fiber reinforced concrete (FRC)
In this study, fiber reinforced concrete was made with various kinds of fibers such as steel fiber, macro-synthetic fiber and hybrid fiber (a blend of macro-synthetic fiber and glass fiber). Many experimental tests were performed to investigate the compressive, flexural and shear behavior of fiber reinforced concrete. In addition to the structural capacity of FRC, the distribution of fiber reinforcement inside the concrete matrix was investigated. Test results of these experimental tests were thoroughly examined to compare and quantify the effects of fiber reinforcement. Next, the test results were used to generate axial force-bending moment interaction diagrams based on current design approaches. In addition, the current design approaches were modified to estimate the accurate and exact value of bending moment. Fiber reinforcement clearly improved the structural performance of tunnel lining. The post-peak flexural and shear strength was significantly influenced by the type and amount of fiber reinforcement. / text
Identifer | oai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/ETD-UT-2010-08-1816 |
Date | 26 January 2011 |
Creators | Seo, Sang Yeon |
Source Sets | University of Texas |
Language | English |
Detected Language | English |
Type | thesis |
Format | application/pdf |
Page generated in 0.0022 seconds