Return to search

Synthesis, Structure, and Characterization of Hybrid Solids Containing Polyoxometalates and Ruthenium Polypyridyl Complexes

Polyoxometalates (POMs), which are inorganic metal oxide cluster anions with discrete structures, have been extensively studied in recent years due to their large variety of applications such as medicine, biology, catalysis, material sciences and chemical analysis. Ruthenium polypyridyl complexes have been extensively studied for their applications as photosensitizers in solar energy conversion and photoelectronic materials. Recently, ruthenium heterocyclic ligand complex-based building blocks have been used for the synthesis of hybrid organic-inorganic solids through the self-assembly. We are interested in the synthesis of ruthenium polypyridyl complexes and polyoxometalate anions through different ways such as coordination bonds, hydrogen bonds and ionic bonds to form hybrid organic-inorganic solids. Here, we report four novel hybrid organicinorganic compounds, [Ru(2,2¡¦-bpy)3]2[SiW12O40] (1), [Ru(2,2¡¦- bpy)2(CH3CN)2]2[SiW12O40] (2), [Ru(2,2¡¦-bpy)3][W6O19] (3), and [Ru(2,2¡¦- bpy)3]2[Mo8O26]„ª5H2O (4) ), (2,2¡¦-bpy = 2,2¡¦-bipyridine). Compounds 1, 3, and 4 were synthesized under hydrothermal reaction methods and compound 2 was synthesized by room temperature solution method. These solids were characterized by elemental analysis, UV-vis spectroscopy, fluorescence spectroscopy, thermogravimetric analysis, IR spectroscopy, powder X-ray diffraction, and Single crystal X-ray diffraction. X-ray xii crystallographic study showed that the crystal structures of compounds 1, 2, 3 and 4 were constructed by Coulombic forces and supramolecular interactions. These molecular compounds were further connected and formed 3D structure through Cƒ{H„ª„ª„ªOPOM and other weak interactions. Spectroscopic studies demonstrated that electronic communication occurred between POMs and the sensitizers.

Identiferoai:union.ndltd.org:WKU/oai:digitalcommons.wku.edu:theses-2166
Date01 May 2012
CreatorsLl, Yanfen
PublisherTopSCHOLAR®
Source SetsWestern Kentucky University Theses
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMasters Theses & Specialist Projects

Page generated in 0.0018 seconds