The main goal of this thesis study is the optimization of the basic design parameters of hybrid electric vehicle drivetrain components to minimize fuel consumption and emission objectives, together with constraints derived from performance requirements. In order to generate a user friendly and flexible platform to model, select drivetrain components, simulate performance, and optimize parameters of series and parallel hybrid electric vehicles, a MATLAB based graphical user interface is designed. A basic sizing procedure for the internal combustion engine, electric motor, and battery is developed. Pre-defined control strategies are implemented for both types of hybrid configurations. To achieve better fuel consumption and emission values, while satisfying nonlinear performance constraints, multi-objective gradient based optimization procedure is carried out with user defined upper and lower bounds of optimization parameters. The optimization process is applied to a number of case studies and the results are evaluated by comparison with similar cases found in literature.
Identifer | oai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12615583/index.pdf |
Date | 01 February 2013 |
Creators | Ozden, Burak Samil |
Contributors | Unlusoy, Samim Y. |
Publisher | METU |
Source Sets | Middle East Technical Univ. |
Language | English |
Detected Language | English |
Type | M.S. Thesis |
Format | text/pdf |
Rights | To liberate the content for public access |
Page generated in 0.002 seconds