Return to search

Developing a Mechanistic Understanding and Optimization of the Cannibal Process: Phase II

The Cannibal system, comprised of an activated sludge process integrated with a side stream anaerobic bioreactor, is capable of reducing excess sludge up to 60% compared to the conventional activated sludge process. The hydraulic retention time (HRT) in the Cannibal bioreactor and the interchange rate (the percent of sludge by mass interchanged between the activated sludge system and the bioreactor on daily basis) are the two important operational parameters in the optimization of the Cannibal process. This research was designed to investigate the effect of the Cannibal bioreactor hydraulic retention time and the interchange rate on the solids destruction in the system. The first phase of this study has looked at the effect of three different HRTs, 5 day, 7 day and 10 day. The interchange rate during phase I was 10%. The results showed that the 7 day HRT can be recommended as the minimum retention period for the Cannibal process. The 5 day HRT Cannibal system had some settling problems and high volatile fatty acid content compared to the 7 day HRT Cannibal system. The protein and polysaccharide tests showed that the Cannibal bioreactor is primarily involved in the release of biopolymers which are degraded in the aerobic environment.

The second part of this study focused on the effect of the interchange rate (IR) on the solids destruction in the system. The interchange rates that were applied in the system were 15%, 10%, 7%, 5% and 4%.The HRT in the Cannibal bioreactor was 7 day. The results showed that the 10% interchange rate gave maximum solids destruction than the other interchange rates. This implies that 10% is an optimum IR for the Cannibal system. Apart from higher solids wastage, the 4% and 5% IR Cannibal systems had higher volatile fatty acid production. / Master of Science

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/35108
Date14 December 2006
CreatorsEaswaran, Sathya Poornima
ContributorsEnvironmental Engineering, Novak, John T., Boardman, Gregory D., Randall, Clifford W.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
RelationSathyaEaswaranThesis.pdf

Page generated in 0.0019 seconds