Return to search

Modelling river ice freeze-up on the Red River near Netley Cut

CRISSP2D, a two-dimensional finite element model, was used to undertake a comprehensive hydrodynamic, thermodynamic, and dynamic ice study on the Red River near Netley Cut in order to determine the cut's effect on the local hydrodynamics and freeze-up processes. Open water hydrodynamic and thermodynamic models were developed, calibrated, and verified such that the measured data and simulation results were in acceptable agreement. These models were used as input to the dynamic ice model which was able to adequately predict ice thickness within the study area once the air-ice heat transfer coefficient was calibrated. The geometry of the dynamic ice model was subsequently altered to simulate the effects of sealing Netley Cut. The geometry change resulted in no noticeable difference in simulated ice thickness, but did affect the hydrodynamics within the study area. In particular, the water velocity in the Red River downstream of Netley Cut and water surface elevation upstream of Netley Cut both increased noticeably.

Identiferoai:union.ndltd.org:MANITOBA/oai:mspace.lib.umanitoba.ca:1993/8865
Date18 September 2012
CreatorsHaresign, Melissa
ContributorsClark, Shawn (Civil Engineering), Blatz, James (Civil Engineering) Tachie, Mark (Mechanical Engineering)
Source SetsUniversity of Manitoba Canada
Detected LanguageEnglish

Page generated in 0.0018 seconds