Interactions are crucial for galaxy formation and profoundly affect their evolution. However, our understanding of the impact of interactions on star formation and activity of the central supermassive black hole remains incomplete. In the canonical picture of the interaction process, these processes are expected to undergo a strong enhancement, but some recent studies have not found this prediction to be true in a statistically meaningful sense. This thesis uses a sample of local interactions observed from the ultraviolet to the far-infrared and a suite of N-body hydrodynamic simulations of interactions to examine the evolution of star formation, stellar mass, dust properties, and spectral energy distributions (SEDs) over the interaction sequence. / Astronomy
Identifer | oai:union.ndltd.org:harvard.edu/oai:dash.harvard.edu:1/11181230 |
Date | 18 October 2013 |
Creators | Lanz, Lauranne |
Contributors | Smith, Howard A. |
Publisher | Harvard University |
Source Sets | Harvard University |
Language | en_US |
Detected Language | English |
Type | Thesis or Dissertation |
Rights | open |
Page generated in 0.0018 seconds