Thesis advisor: James P. Morken / (+)-Discodermolide is a marine natural product and is one of the most potent microtubule stabilizers in human cell lines. Because of its unique linear structure and important properties, a number of total syntheses of (+)-discodermolide and its derivatives have been reported. Herein, an efficient, highly convergent, and stereocontrolled total synthesis is presented (Chapter 2). The synthesis relied on the development of three catalytic and stereoselective processes: platinum-catalyzed asymmetric diene diboration, nickel-catalyzed diastereoselective hydroboration of chiral dienes (Chapter 1), and nickel-catalyzed borylative diene-aldehyde coupling (see Chapter 4). Combination of these reactions allows preparation of the target in a short sequence. Moreover, the development of rhodium-catalyzed asymmetric hydroformylation (Chapter 3) makes this approach the first Roche ester free (+)-discodermolide synthesis. / Thesis (PhD) — Boston College, 2014. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
Identifer | oai:union.ndltd.org:BOSTON/oai:dlib.bc.edu:bc-ir_103737 |
Date | January 2014 |
Creators | Yu, Zhiyong |
Publisher | Boston College |
Source Sets | Boston College |
Language | English |
Detected Language | English |
Type | Text, thesis |
Format | electronic, application/pdf |
Rights | Copyright is held by the author. This work is licensed under a Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0/ |
Page generated in 0.0015 seconds