South African water management areas could find themselves without enough water for its users due to new methods of performing water allocation as stipulated in the National Water Act of 1998. A water accounting system would address the need for accurate metering, monitoring and auditing of South Africa’s water resources to ensure that users are complying with their allocations. Such a system should be able to provide information such as comparisons between the simulated and observed flow of water at a point, comparisons between the amount of water allocated to a user and the actual water used by that user, and the source and destination of water at a point. This document contains a literature review, an explanation of the methods used to develop a prototype water accounting system and a discussion of the results from testing the system. A literature review was undertaken which covered topics in water resources planning, water resources operations, local legislation for water allocation and new technologies which could be applied to aid the management of water resources in South Africa. The results from the literature review indicated real time water accounting systems can give effect to water allocation rules. The water accounting system is comprised of two simulation models and a database. The models used for the study were the ACRU2000 model and the MIKE BASIN model. These models require data as well as a means to automate the transfer of data between the models and thus a database was developed. The database was developed in Microsoft Access and, in addition to the construction of a number of tables required to house the data, a database dashboard was made to control the functions of the database. An assessment of the ACRU2000 and MIKE BASIN models was performed in order to determine if they are suitable for use as water accounting tools. ACRU2000 was used for its process based, daily rainfall-runoff modelling capabilities. Due to the process based modelling capabilities of ACRU2000, forecasts of rainfall can be used as input to the simulations. Hot starting is the storing of internal model state variables at a particular time and the use of these variables in a different simulation to start the model up again. It was expected that, due to long simulation run times for ACRU2000, it would be beneficial to enable ACRU2000 to be hot started and an attempt to hot start ACRU2000 is presented. This would have allowed for significantly decreased simulation run times as the model can be warmed up for two years and thereafter hot started to run only for one day at a time. An assessment of the MIKE BASIN network allocation model to be used as a water accounting system was performed by attempting to meet the project objectives through
building a fictional water supply network. The network is composed of a small catchment containing six runoff generating regions, a reservoir and ten water users. Three network allocation scenarios were constructed in order to fully test the rule sets and allocation capabilities currently available in the MIKE BASIN model. The study has shown that the tools and models used are capable of forming a rudimentary water accounting system. This is encouraging as it shows that there is the potential to improve the water resources management in South Africa using tools that already exist. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2010.
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:ukzn/oai:http://researchspace.ukzn.ac.za:10413/4963 |
Date | January 2010 |
Creators | Kime, Dylan B. |
Contributors | Smithers, Jeffrey Colin. |
Source Sets | South African National ETD Portal |
Language | en_ZA |
Detected Language | English |
Type | Thesis |
Page generated in 0.0024 seconds