<div>A sharp, circular 7° half-angle cone was tested in the Boeing/AFOSR Mach-6 Quiet Tunnel</div><div>at 6° angle of attack, extending several previous experiments on the growth and breakdown of</div><div>stationary crossflow instabilities in the boundary layer. </div><div><br></div><div>Measurements were made using infrared</div><div>imaging and surface pressure sensors. Detailed measurements of the stationary and traveling</div><div>crossflow vortices, as well as various secondary instability modes, were collected over a large</div><div>region of the cone.</div><div><br></div><div>The Rod Insertion Method (RIM) roughness, first developed for use on a flared cone, was</div><div>adapted for application to crossflow work. It was demonstrated that the roughness elements were</div><div>the primary factor responsible for the appearance of the specific pattern of stationary streaks</div><div>downstream, which are the footprints of the stationary crossflow vortices. In addition, a roughness</div><div>insert was created with a high RMS level of normally-distributed roughness to excite the naturally</div><div>most-amplified stationary mode.</div><div><br></div><div>The nonlinear breakdown mechanism induced by each type of roughness appears to be</div><div>different. When using the discrete RIM roughness, the dominant mechanism seems to be the</div><div>modulated second mode, which is significantly destabilized by the large stationary vortices. This</div><div>is consistent with recent computations. There is no evidence of the presence of traveling crossflow</div><div>when using the RIM roughness, though surface measurements cannot provide a complete picture.</div><div>The modulated second mode shows strong nonlinearity and harmonic development just prior</div><div>to breakdown. In addition, pairs of hot streaks merge together within a constant azimuthal</div><div>band, leading to a peak in the heating simultaneously with the peak amplitude of the measured</div><div>secondary instability. The heating then decays before rising again to turbulent levels. This nonmonotonic</div><div>heating pattern is reminiscent of experiments on a flared cone and earlier computations</div><div>of crossflow on an elliptic cone.</div><div><br></div><div>When using the distributed roughness there are several differences in the nonlinear breakdown</div><div>behavior. The hot streaks appear to be much more uniform and form at a higher wavenumber,</div><div>which is expected given computational results. Furthermore, the traveling crossflow waves become</div><div>very prominent in the surface pressure fluctuations and weakly nonlinear. In addition there</div><div>appears in the spectra a higher-frequency peak which is hypothesized to be a type-I secondary instability</div><div>under the upwelling of the stationary vortices. The traveling crossflow and the secondary</div><div>instability interact nonlinearly prior to breakdown.</div>
Identifer | oai:union.ndltd.org:purdue.edu/oai:figshare.com:article/9159689 |
Date | 02 August 2019 |
Creators | Joshua B Edelman (6624017) |
Source Sets | Purdue University |
Detected Language | English |
Type | Text, Thesis |
Rights | CC BY-NC-SA 4.0 |
Relation | https://figshare.com/articles/Nonlinear_Growth_and_Breakdown_of_the_Hypersonic_Crossflow_Instability/9159689 |
Page generated in 0.0022 seconds