Return to search

Exploiting non-linear piezoelectricity in novel semiconductor based electronic devices

Materials have always had a large impact on society over the different ages. Piezoelectric materials are the often ‘invisible’ materials which find widespread use, unknown to the general public by large. Mobile electronics, automotive systems, medical and industrial systems are few of the key areas where ‘piezoelectricity’ is indispensable. The parking sensor of our car uses the effect and even the echo to image an unborn baby in a womb requires the exploitation of the piezoelectric effect. The work presented in this thesis investigates the piezoelectric effect in semiconductors, namely in III V, III N and II VI materials to have a better understanding and design potential applications in light emitting diodes (LEDs) and other electronic devices. The current work focuses on the non-linear behaviour in the strain of the piezo effect, which is manifested by the generation of electric field under crystal deformation. Previous works have already confirmed the reports of the existence of non-linear piezoelectric effects in zincblende III V semiconductors. Here, the same semiempirical approach using Density Functional Theory has been utilized to investigate the strain dependent elastic and dielectric properties of wurtzite III N materials. While we report the strong non-linear strain induced piezoelectric behaviour with second order coefficients, all spontaneous polarization terms are substantially smaller than the previously proposed values. We show that, unlike existing models, our calculated piezoelectric coefficients and nonlinear model provide a close match to the internal piezoelectric fields of quantum well and superlattice structures. Also, pressure dependence of the piezoelectric field in InGaN based LEDs predicts a significant improvement of the spontaneous emission rate can be achieved as a result of a reduction of the internal field. The LED devices using the proposed structures including a metamorphic layer under the active region of the device are expected to increase their light output power by up to 10%. We also explored the impact of the non-linear piezo effect in nanowires and present a further theoretical computational study of single photon sources optimization in InGaN based wurtzite single quantum dots. We observed the light emission can be made by those single photon sources covering the entire visible spectrum through suitable change in the alloy composition.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:607006
Date January 2013
CreatorsPal, Joydeep
ContributorsMigliorato, Max
PublisherUniversity of Manchester
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttps://www.research.manchester.ac.uk/portal/en/theses/exploiting-non-linear-piezoelectricity-in-novel-semiconductor-based-electronic-devices(9e358fe5-637d-4106-834b-3b2ae40a8a7a).html

Page generated in 0.0039 seconds