O reconhecimento facial é uma tarefa que os seres humanos realizam naturalmente todos os dias e praticamente sem esforço nenhum. Porém para uma máquina este processo não é tão simples. Com o aumento do poder computacional das máquinas atuais criou-se um grande interesse no processamento de imagens e vídeos digitais, com aplicações nas mais diversas áreas de conhecimento. Este trabalho objetiva a comparação de técnicas de reconhecimento facial, já conhecidas na literatura, com o intuito de identificar qual técnica possui melhor desempenho em um ambiente real e semicontrolado. Secundariamente avalia-se a possibilidade da utilização de uma ou mais técnicas de reconhecimento facial para identificar automaticamente a presença de alunos em uma sala de aula de artes marciais, utilizando imagens das câmeras de vigilância instaladas no recinto, levando em consideração aspectos importantes, tais como: imagens com pouca nitidez, luminosidade não ideal, movimentação constante dos alunos e o fato das câmeras estarem em um ângulo fixo. Este trabalho está relacionado às áreas de Processamento de Imagens e Reconhecimento de Padrões, e integra a linha de pesquisa de \"Monitoramento de Presença\" do projeto \"Ensino e Monitoramento de Atividades Físicas via Técnicas de Inteligência Artificial\" (Processo 2014.1.923.86.4, publicado no DOE 125(45), em 10/03/2015), projeto este executado em conjunto da Universidade de São Paulo, Faculdade Campo Limpo Paulista e Academia Central Kungfu-Wushu. Com os experimentos realizados e apresentados neste trabalho foi possível concluir que, dentre os métodos de reconhecimento facial utilizados, o método Local Binary Patterns teve o melhor desempenho no ambiente proposto. Por outro lado, o método Eigenfaces teve o pior desempenho de acordo com os experimentos realizados. Além disso, foi possível concluir também que não é viável a realização da detecção de presença automática de forma confiável no ambiente proposto, pois a taxa de reconhecimento facial foi relativamente baixa, se comparada a outros trabalhos do estado da arte, trabalhos estes que usam de ambientes de testes mais amigáveis, mas ao mesmo tempo menos comumente encontrados em nosso dia-a-dia. Acredita-se que foi possível alcançar os objetivos propostos pelo trabalho e que o mesmo possa contribuir para o estado da arte atual na área de visão computacional, mais precisamente no âmbito do reconhecimento facial. Ao final são sugeridos alguns trabalhos futuros que podem ser utilizados como ponto de partida para a continuação desta pesquisa ou até mesmo de novas pesquisas relacionadas a este tema / Face recognition is a task that human beings perform naturally in their everyday lives, usually with no effort at all. To machines, however, this process is not so simple. With the increasing computational power of current machines, a great interest was created in the field of digital videos and images processing, with applications in most diverse areas of knowledge. This work aims to compare face recognition techniques already know in the literature, in order to identify which technique has the best performance in a real and semicontrolled environment. As a secondary objective, we evaluate the possibility of using one or more face recognition techniques to automatically identify the presence of students in a martial arts classroom using images from the surveillance cameras installed in the room, taking into account important aspects such as images with low sharpness, illumination variation, constant movement of students and the fact that the cameras are at a fixed angle. This work is related to the Image Processing and Pattern Recognition areas, and integrates the research line \"Presence Monitoring\" of the project entitled \"Education and Monitoring of Physical Activities using Artificial Intelligence Techniques\" (Process 2014.1.923.86.4, published in DOE 125 (45) on 03/10/2015), developed as a partnership between the University of São Paulo, Campo Limpo Paulista Faculty, and Kungfu-Wushu Central Academy. With the experiments performed and presented in this work it was possible to conclude that, amongst all face recognition methods that were tested, Local Binary Patterns had the best performance in the proposed environment. On the other hand, Eigenfaces had the worse performance according to the experiments. Moreover, it was also possible to conclude that it is not feasible to perform the automatic presence detection reliably in the proposed environment, since the face recognition rate was relatively low, compared to the state of the art which uses, in general, more friendly test environments but at the same time less likely found in our daily lives. We believe that it was possible to achieve the objectives proposed by this work and that can contribute to the current state of the art in the computer vision field and, more precisely, in the face recognition area. Finally, some future work is suggested that can be used as a starting point for the continuation of this work or even for new researches related to this topic
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-07012018-222531 |
Date | 14 November 2017 |
Creators | Kelvin Salton do Prado |
Contributors | Norton Trevisan Roman, Marcelo de Souza Lauretto, Mauricio Marengoni, Sarajane Marques Peres |
Publisher | Universidade de São Paulo, Sistemas de Informação, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.002 seconds