Return to search

Procedural reconstruction of buildings : towards large scale automatic 3D modeling of urban environments

This thesis is devoted to 2D and 3D modeling of urban environments using structured representations and grammars. Our approach introduces a semantic representation for buildings that encodes expected architectural constraints and is able to derive complex instances using fairly simple grammars. Furthermore, we propose two novel inference algorithms to parse images using such grammars. To this end, a steepest ascent hill climbing concept is considered to derive the grammar and the corresponding parameters from a single facade view. It combines the grammar constraints with the expected visual properties of the different architectural elements. Towards addressing more complex scenarios and incorporating 3D information, a second inference strategy based on evolutionary computational algorithms is adopted to optimize a two-component objective function introducing depth cues. The proposed framework was evaluated qualitatively and quantitatively on a benchmark of annotated facades, demonstrating robustness to challenging situations. Substantial improvement due to the strong grammatical context was shown in comparison to the performance of the same appearance models coupled with local priors. Therefore, our approach provides powerful techniques in response to increasing demand on large scale 3D modeling of real environments through compact, structured and semantic representations, while opening new perspectives for image understanding

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00637638
Date25 July 2011
CreatorsSimon, Loïc
PublisherEcole Centrale Paris
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageEnglish
TypePhD thesis

Page generated in 0.0018 seconds