Return to search

Molecular pathogenesis of non-eosinophilic asthma

Research Doctorate - Doctor of Philosophy (PhD) / Asthma involves chronic inflammation of the airways that is heterogeneous in nature. Eosinophilic airway responses are well described in asthma, however non-eosinophilic subtypes of asthma have been recently reported, and can involve the influx of neutrophils into the airways (neutrophilic asthma). Neutrophils are important effector cells of the innate immune system. These cells are the first to migrate to inflammatory sites, where they contain and eliminate pathogenic microorganisms. Neutrophils also release cytokines and chemokines that initiate and amplify inflammatory responses. The mechanisms of neutrophilic asthma remain largely unknown; however activation of the innate immune response is implicated, particularly increased levels of proinflammatory cytokines Interleukin (IL)-8 and IL-1beta and gene expression of Toll Like Receptor (TLR)-4 and TLR2 have been demonstrated in induced sputum samples. This thesis examines innate immune responses of airway and circulating neutrophils, with a focus on neutrophilic asthma. Innate immune neutrophil activation occurs in response to exposure to Lipopolysaccharide (LPS), which activates TLR4. The activation response consists of the release of preformed granule associated mediators such as Matrix Metalloproteinase (MMP)-9 and Oncostatin M (OSM), new gene transcription and release of inflammatory cytokines such as IL-8, IL-1beta and Tumor Necrosis Factor (TNF)-alpha, and new gene transcription of TLR2 & TLR4 which serve to amplify neutrophil responses. In addition, this thesis examines whole genome gene expression profiles of circulating neutrophils in neutrophilic and eosinophilic asthma. The aims of this thesis are based on the hypothesis that dysregulation of innate immune neutrophil responses occurs with ageing and airway disease, particularly neutrophilic asthma and chronic obstructive pulmonary disease (COPD). With advancing age, there were alterations in the innate immune responses of neutrophils, which were characterised by enhanced spontaneous activation of both airway and circulating neutrophils, and a decreased response of circulating neutrophils to LPS. There was a decreased activation of airway neutrophils in airway disease that was most pronounced in neutrophilic asthma and COPD, with decreased production and release of proinflammatory cytokines most likely due to a downregulation of TLR4. TLR2 was downregulated in resting and LPS stimulated circulating neutrophils in asthma, particularly neutrophilic asthma. Circulating neutrophils had a decreased spontaneous release of total MMP-9, and downregulation of OSM, TLR2 and TLR4 at rest in COPD. However when stimulated with LPS, subjects with COPD had an enhanced proinflammatory cytokine release, with increases in IL-8 and TNF-alpha compared to subjects with asthma or healthy controls. Analysis of whole genome gene expression of circulating neutrophils in asthma revealed distinct gene profiles relating to asthma subtype. There was upregulation of genes relating to cell motility, inhibition of apoptosis and the NF-kB in neutrophilic asthma, which would contribute to their accumulation in the airways. The innate immune response is critical in controlling infections by bacteria and viruses. The reduced innate immune response of airway neutrophils in airway disease could contribute to impaired local defense, which may lead to an increased susceptibility to infection by invading pathogens. Systemically, the molecular mechanisms of neutrophilic asthma are distinct from eosinophilic asthma and may involve the enhancement of neutrophil chemotaxis and survival, contributing to their accumulation in the airways.

Identiferoai:union.ndltd.org:ADTP/222113
Date January 2008
CreatorsBaines, Katherine Joanne
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
RightsCopyright 2008 Katherine Joanne Baines

Page generated in 0.0016 seconds