The lungs and upper airways are mucosal surfaces that are common site for infection with an enormous variety of inhaled pathogens. Therefore, induction of immune responses in the respiratory tract is crucial for protection against respiratory diseases. One of the pathogens infecting the host via the respiratory tract is Mycobacterium Tuberculosis. The reported efficacy of the currently used Bacillus Calmette-Guérin (BCG) vaccine against tuberculosis is highly variable, ranging from 50% against pulmonary tuberculosis to 80% against disseminated tuberculosis. Recently, the current route of vaccination (intradermal) has been considered as a possible factor influencing the protective capacity of the BCG vaccine. In this regard, intradermal route most likely induces protective systemic responses while it fails to induce optimal responses in the lungs. Therefore, our working hypothesis is that vaccination should be directed towards the respiratory mucosal immunity in order to improve the degree of host protection in the lungs. In this thesis we studied the effect of the route of immunization as well as of different mucosal adjuvants on the induction of mucosal immune responses against the mycobacterial surface antigen PstS-1. We found that, the intranasal (i.n.) route of immunization was a more favorable route inducing strong local immune responses, than intraperitoneal (i.p.) route. Indeed, i.n. route immunization, unlike the i.p. route, elicited strong IgA responses in the lungs accompanied by a major influx of CD4+ T cells and a significant local production of IFN-gamma. IgA, being the predominant Ig isotype at mucosal tissues, is considered a major effector molecule involved in defense mechanisms against viral and bacterial pathogens at these sites. Therefore, we investigated the possible role of IgA in the protection of the respiratory mucosa against mycobacterial infections, using mice deficient in IgA and in the polymeric Ig receptor. We show that, deficient mice are more susceptible to mycobacterial infections than wild type mice, thereby demonstrating a role for IgA in protection against mycobacteria. Importantly, our studies revealed a reduced production of protective factors, such as INF-gamma and TNF-alpha in the lungs of deficient mice that was associated with the higher susceptibility seen in these mice compared to wild-type mice. We also conducted challenge experiments against another respiratory pathogen, Chlamydia pneumoniae, using IgA deficient mice. Likewise to mycobacteria, our data support a role for IgA in the protection of the respiratory tract against C. pneumoniae infection. Finally, we investigated the possible mechanisms explaining the reduced pro-inflammatory responses in IgA deficient mice. Our data indicated that IgA deficient mice present a defective response to stimulation with LPS or 19kDa which appears to be both, essentially due to suboptimal stimulation of macrophages and restricted to the lungs.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:su-388 |
Date | January 2005 |
Creators | Rodríguez, Ariane |
Publisher | Stockholms universitet, Wenner-Grens institut, Stockholm : Wenner-Grens institut för experimentell biologi |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.002 seconds