Recently, point-of-care diagnostics has gained great attention because it can improve patient’s quality of life. Electrochemical diagnostic systems are promising because of their miniaturizability and low-cost. However, fabrication of such devices requires special skills as well as expensive equipment and supplies. This thesis is based on a research project aimed at fabricating electrochemical sensors combing wax printing and inkjet printing or wax printing and hand painting. The electrochemical sensors can be used for measuring different kinds of electrochemical analytes like dopamine, uric acid by electrochemical methods like amperometry, which can show great calibration curve. The LOD of dopamine, uric acid, ascorbic acid, Nile Blue, hydrogen peroxide and ferrocene is 0.015 µM, 7.3 µM, 30 µM, 1.3 µM, 8 nM and 30 µM, respectively. Further, we can modify the electrochemical sensor by using multiwall carbon nanotube in order to improve the sensitivity of the electrochemical sensors. This modified electrochemical sensor can also be used as immunoassay by sandwich format ELISA for detecting carcinoembryonic antigen (CEA), which has been designated as a reliable biomarker for several types of cancers. We found that the CNT modified hand-painting device can detect CEA down to 0.6 ng/mL, which is three times lower than the cut-off value of diagnosis, i.e. 5 ng/mL in blood.
Identifer | oai:union.ndltd.org:siu.edu/oai:opensiuc.lib.siu.edu:theses-3245 |
Date | 01 December 2017 |
Creators | Chen, Sensen |
Publisher | OpenSIUC |
Source Sets | Southern Illinois University Carbondale |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses |
Page generated in 0.0021 seconds