Return to search

Relações entre Aprendizagem Dentro e Fora de Equilíbrio Termodinâmico

A aplicação da Mecânica Estatística no estudo de Redes Neurais é baseada no fato que a extração de informação de dados (exemplos) pode ser modelada por um processo de minimização de uma função energia. Técnicas originadas no estudo de sistemas desordenados, tais como o Método de Réplicas; o Método da Cavidade; Equações de TAP; bem como técnicas de Monte Carlo tem sido exaustivamente estudadas, levando a vários resultados dentro do que temos conhecido como aprendizagem off-line, onde o sistema é posto em equilíbrio termodinâmico. A possibilidade do tempo de relaxação ser muito grande implica alto custo computacional, o que tem estimulado a busca por algoritmos de aprendizagem fora do equilíbrio, onde surge uma interessante classe de métodos conhecidos por aprendizagem on-line, na qual cada informação (exemplo) é apresentada ao sistema apenas uma vez, trazendo um baixo custo computacional junto a um bom desempenho. Nessa dissertação nós trabalhamos em cima do trabalho de Opper, que relacionou a aprendizagem on-line ótima à aprendizagem off-line Bayesiana por meio de uma aproximação Gaussiana da distribuição posterior. Isso porém, pode ser visto como apenas o primeiro passo numa expansão generalizada de Gram-Charlier (G-Ch) da densidade posterior, a qual pode trazer novos caminhos para o entendimento da relação on-line/off-line. A expansão também pode ser estendida à aprendizagem por potencial, onde a distribuição de probabilidades é Gibbsiana utilizando-se de todos os termos da série, ou seja, na aprendizagem off-line.Assim a G-Ch nos permite estudar extensões não Gaussianas da aprendizagem fora do equilíbrio (on-line) para uma aprendizagem em equilíbrio (off-line), dando uma interpretação do uso das famílias dos hiperparâmetros, construídos a partir dos cumulantes da distribuição posterior, como uma incorporação de informações sobre a forma geométrica do espaço de Versões. Apresentamos duas aplicações para os algoritmos obtidos por tais caminhos: um Perceptron unidimensional e um N-dimensional. Na primeira observamos a aprendizagem Bayesiana na presença de ruído e quando a regra a ser aprendida muda no tempo, onde construímos um diagrama de robustez para a análise da adaptabilidade do algoritmo frente a estimação incorreta do nível de ruído. Na segunda aplicação apresentamos resultados preliminares para o Perceptron em N dimensões. Estudamos aprendizagem usando o potencial ótimo que leva à saturação do limite de Bayes para a generalização no limite termodinâmico.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-20112003-094624
Date02 August 2000
CreatorsEvaldo Araújo de Oliveira Filho
ContributorsNestor Felipe Caticha Alfonso, Jose Fernando Fontanari, Carmen Pimentel Cintra do Prado
PublisherUniversidade de São Paulo, Física, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0022 seconds