Return to search

Growth and Characterization of InN Nanorods Grown on Si(111) Substrate by Plasma-assisted Molecular Beam Epitaxy

In this thesis, we will discuss how to grow InN nanorods. We have tried different parameters to grow InN nanorods on silicon (111) substrate by plasma assisted molecular beam epitaxy (PAMBE). The growth temperature and V/III ratio are the most important factors in growth. By changing these two factors, we can grow InN into different forms.
Another factor of forming InN nanorod is AlN buffer layer. Growing without AlN buffer layer, InN nanorods can be removed from substrate very easily. Growing with AlN buffer layer, the interface between InN nanorods and silicon substrate seems stronger.
After a long time growth, the bottoms of InN nonarods combine together. Therefore, the morphology of this sample seems like InN nanorods grown on InN film.
From XRD measurement, we can know the InN nanorod is growing alone the c-axis. Without the signal of In metal shows InN nanorod were grown under the N-rich condition.
We found that the peak position of PL spectra is about 0.66 eV. And did not have any shift while the temperature changing.
Measuring CL spectra of areas with different diameters of single InN nanorod, we got almost the same result. The peak positions are around 0.63 eV. We calculate the quantum size of InN for having quantum effect is about 17 nm. Maybe it is one of the reasons of peak positions did not get shift while diameter changing.
In Raman spectra, the E2(high) peak of InN nanorod is 488.23 cm-1, it is closer to the unstrained InN (488 cm-1) than InN film.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0901108-201631
Date01 September 2008
CreatorsKung, Chih-Hao
ContributorsTsu-Chiang Yen, Der-Jun Jang, Yung-Sung Chen, Li-Wei Tu, Min-Hsiung Tsai
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0901108-201631
Rightsnot_available, Copyright information available at source archive

Page generated in 0.0017 seconds