Return to search

Evolution and genetics of antiviral immunity in Drosophila

Virus-host interactions determine virus transmissibility and virulence, and underlie coevolution that shapes interesting biological phenomena such as the genetic architecture of host resistance and host range. Characterization of the virus factors that exert selective pressure on the host, and the host genes which underlie resistance and adaptation against viruses will help to define the mechanistic pathways embroiled in host-virus coevolution. In this thesis, I describe the viral causes and host consequences of host-virus coevolution. These include genomic signatures consistent with antagonistic coevolution in antiviral RNA interference pathway genes such as high rates of positive selection and polymorphism, loci that underlie genetic variation in resistance to virus infection, and apparent conflict between NF-κB signalling and DNA virus infection. The RNA interference (RNAi) pathway is the most general innate immune pathway in insects, underlined by the observation that many viruses encode suppressors of RNAi (VSRs). The relationship between RNAi and VSRs has garnered attention as a plausible battleground for host-virus antagonistic coevolution, and genomic patterns in Drosophila support this hypothesis. However, genomic patterns in the N-terminal domain of the key RNAi effector gene, Argonaute-2, have not been described. In Chapter 2, I sequence the Argonaute-2 N-terminal domain using PacBio long-read sequencing technology to describe variation within and across Drosophila species, and test whether this variation is associated with resistance to Drosophila C Virus. The RNAi pathway evolves adaptively in Drosophila, but this has not been formally extended across invertebrate species. In Chapter 3, I quantify rates of adaptive protein evolution and describe evidence for selective sweeps in RNAi pathway genes using population genomic data from 8 insect and nematode species. These analyses indicate that RNAi genes involved in suppression of transposable elements and defence against viruses evolve rapidly across invertebrates, and I identify genes with signatures of elevated adaptation in multiple insect species. Host genes that underlie host-virus interactions have been described in RNA virus infection of Drosophila, however substantially less attention has focussed on the host response to DNA viruses, primarily because no DNA viruses have been isolated from Drosophila. In Chapter 4, I describe the isolation of Kallithea virus, a Drosophila dsDNA nudivirus, and characterise the host response to infection and genetic variation in resistance. I find that Kallithea virus infection causes early male-specific lethality, a cessation of oogenesis, and induction of undescribed virus-responsive genes. Further, I describe genetic variation in resistance and tolerance to Kallithea virus infection, and identify a potential causal variant for virus-induced mortality in Cip4. Insect viruses commonly encode viral suppressors of RNAi, however there are a multitude of antiviral immune mechanisms besides RNAi which may select for viral-encoded inhibitors. In Chapter 5, I describe the requirement for RNAi and NF-κB in immunity against Kallithea virus, and map gp83 as a virus-encoded inhibitor of NF-κB signalling. I find that gp83 inhibits Toll signalling at the level of, or downstream of NF-κB transcription factors, and that this immunosuppressive function is conserved in other nudiviruses.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:756976
Date January 2018
CreatorsPalmer, William Hunt
ContributorsObbard, Darren ; Hadfield, Jarrod
PublisherUniversity of Edinburgh
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/1842/31557

Page generated in 0.0019 seconds