Return to search

Detecting Prominent Features and Classifying Network Traffic for Securing Internet of Things Based on Ensemble Methods

abstract: Rapid growth of internet and connected devices ranging from cloud systems to internet of things have raised critical concerns for securing these systems. In the recent past, security attacks on different kinds of devices have evolved in terms of complexity and diversity. One of the challenges is establishing secure communication in the network among various devices and systems. Despite being protected with authentication and encryption, the network still needs to be protected against cyber-attacks. For this, the network traffic has to be closely monitored and should detect anomalies and intrusions. Intrusion detection can be categorized as a network traffic classification problem in machine learning. Existing network traffic classification methods require a lot of training and data preprocessing, and this problem is more serious if the dataset size is huge. In addition, the machine learning and deep learning methods that have been used so far were trained on datasets that contain obsolete attacks. In this thesis, these problems are addressed by using ensemble methods applied on an up to date network attacks dataset. Ensemble methods use multiple learning algorithms to get better classification accuracy that could be obtained when the corresponding learning algorithm is applied alone. This dataset for network traffic classification has recent attack scenarios and contains over fifteen attacks. This approach shows that ensemble methods can be used to classify network traffic and detect intrusions with less training times of the model, and lesser pre-processing without feature selection. In addition, this thesis also shows that only with less than ten percent of the total features of input dataset will lead to similar accuracy that is achieved on whole dataset. This can heavily reduce the training times and classification duration in real-time scenarios. / Dissertation/Thesis / Masters Thesis Computer Science 2019

Identiferoai:union.ndltd.org:asu.edu/item:53839
Date January 2019
ContributorsPonneganti, Ramu (Author), Yau, Stephen (Advisor), Richa, Andrea (Committee member), Yang, Yezhou (Committee member), Arizona State University (Publisher)
Source SetsArizona State University
LanguageEnglish
Detected LanguageEnglish
TypeMasters Thesis
Format60 pages
Rightshttp://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0018 seconds