As more sophisticated systems are being developed, powerful approaches for modeling their behavior and test their reliability are necessary. The research work in this thesis takes on the problem of building a Graphical Programming Environment that permits to create models of DESs in a timed temporal logic framework and simulate the DES models in real-time using an object oriented environment through the interconnection of visual symbols. A temporal logic framework is developed to write the formal models of the temporal references of DESs. This approach is enhanced by the inclusion of a global clock variable to add real-time properties to the formal specifications of real-time DESs. The interactive visual environment allows the programmer to activate graphical symbols by means of menu selections. The graphical symbols are grouped into classes which are eventually properly interconnected, parsed and mapped into source code written in the timed temporal logic language. A knowledge-based system is composed of knowledge databases (database of facts and database of rules), These databases, representing the system behavior, can be created using this tool, for which a reasoning mechanism is required. An inference engine is designed to interpret these knowledge databases. An OO programming language is used, Objective-C. It is used throughout the design, however, when using the tool, the user does not notice the underlying programming language, in other words, the programming language is transparent to the user. The Graphical Programming Environment designed in this thesis can be used to build the specifications of real-time DESs. Different knowledge databases have been created using this interactive tool for three examples to verify their behaviors, such examples are: The ABP communication protocol, the packet-switched communication protocol, and the telephone system.
Identifer | oai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/9940 |
Date | January 1994 |
Creators | Sisiruca, Alfredo. |
Contributors | Ionescu, Dan, |
Publisher | University of Ottawa (Canada) |
Source Sets | Université d’Ottawa |
Detected Language | English |
Type | Thesis |
Format | 183 p. |
Page generated in 0.0019 seconds