Return to search

Titre : Inégalités de martingales non commutatives et Applications / noncommunicative martingale inequalities and applications

Cette thèse présente quelques résultats de la théorie des probabilités non commutatives, et traite en particulier des inégalités de martingales dans des algèbres de von Neumann et de leurs espaces de Hardy associés. La première partie démontre un analogue non commutatif de la décomposition de Davis faisant intervenir la fonction carrée. Les arguments classiques de temps d'arrêt ne sont plus valides dans ce cadre, et la preuve se base sur une approche duale. Le deuxième résultat important de cette partie détermine ainsi le dual de l'espace de Hardy conditionnel h_1(M). Ces résultats sont ensuite étendus au cas 1<p<2. La deuxième partie transfère une décomposition atomique pour les espaces de Hardy h_1(M) et H_1(M) aux martingales non commutatives. Des résultats d'interpolation entre les espaces h_p(M) et bmo(M) sont également établis, relativement aux méthodes complexe et réelle d'interpolation. Les deux premières parties concernent des filtrations discrètes. Dans la troisième partie, on introduit des espaces de Hardy de martingales non commutatives relativement à une filtration continue. Les analogues des inégalités de Burkholder/Gundy et de Burkholder/Rosenthal sont obtenues dans ce cadre. La dualité de Fefferman-Stein ainsi que la décomposition de Davis sont également transférées avec succès à cette situation. Les preuves se basent sur des techniques d'ultraproduit et de L_p-modules. Une discussion sur une décomposition impliquant des atomes algébriques permet d'obtenir les résultats d'interpolation attendus / This thesis presents some results of the theory of noncommutative probability. It deals in particular with martingale inequalities in von Neumann algebras, and their associated Hardy spaces. The first part proves a noncommutative analogue of the Davis decomposition, involving the square function. The usual arguments using stopping times in the commutative case are no longer valid in this setting, and the proof is based on a dual approach. The second main result of this part determines the dual of the conditioned Hardy space h_1(M). These results are then extended to the case 1<p<2. The second part proves that an atomic decomposition for the Hardy spaces h_1(M) and H_1(M) is valid for noncommutative martingales. Interpolation results between the spaces h_p(M) and bmo(M) are also established, with respect to both complex and real interpolations. The two first parts concern discrete filtrations. In the third part, we introduce Hardy spaces of noncommutative martingales with respect to a continuous filtration. The analogues of the Burkholder/Gundy and Burkholder/Rosenthal inequalities are obtained in this setting. The Fefferman-Stein duality and the Davis decomposition are also successfully transferred to this situation. The proofs are based on ultraproduct techniques and L_p-modules. A discussion about a decomposition involving algebraic atoms gives the expected interpolation results

Identiferoai:union.ndltd.org:theses.fr/2011BESA2023
Date05 July 2011
CreatorsPerrin, Mathilde
ContributorsBesançon, Xu, Quanhua
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.002 seconds