Return to search

The effect of the intervertebral disc microenvironment on disc cell and mesenchymal stem cell behaviour : implications for disc degeneration and regeneration

Intervertebral disc (IVD) degeneration is associated with low back pain (LBP). It has been suggested that changes in the IVD physio-chemical microenvironment (i.e. hypoxia, reduced nutrient and acidic conditions) may lead to disc degeneration. Studying the response of human nucleus pulposus (NP) cells to these conditions could establish the causal relationship between IVD microenvironment and aberrant cellular behaviour, characteristic of disc degeneration. Human bone marrow mesenchymal stem cells (BM-MSCs) are a promising cell population for disc regeneration. However, knowledge of their survival and functioning in the microenvironment of the IVD is still lacking. Moreover, in vitro co-culture model studies that are used to study MSC/disc cell interaction, also need to consider the effect of the microenvironment on cellular responses. BM-MSCs and degenerate NP cells were cultured alone or co-cultured in monolayer under hypoxia (2%O2), reduced nutritional (2% serum or/and 5mM glucose) and acidic (moderate pH 6.8 or severe pH 6.5) conditions alone or in combination for 7 days. Cell viability, proliferation, gene and protein expression was assessed. Degenerate NP cells and BM-MSCs maintained good cell viability under all conditions. Both cell types demonstrated overall similar proliferation and gene and protein responses under the majority of the conditions and combinations studied. Hypoxia promoted aggrecan and versican matrix biosynthesis in both cell types. Nutrient deprived and moderate acidic conditions (pH 6.8) inhibited proliferation of both cell types. Interestingly the combination of hypoxia with these conditions showed a protective effect in modulating cell proliferation. These results imply that hypoxia may be beneficial in some instances. Nutrient deprived conditions had a relatively minor effect on degenerate NP cell gene and protein expression but these conditions specifically inhibited VCAN expression in BM-MSCs. The combination of hypoxia with these conditions increased or restored VCAN expression. Interestingly the combination of hypoxia with reduced glucose conditions increased aggrecan and versican matrix biosynthesis in both NP cells and BM-MSCs. The combination of hypoxia and complete nutrient deprived conditions (both reduced serum and reduced glucose) impaired ACAN, VCAN and PAX-1 gene and aggrecan and versican protein expression in degenerate NP cells implicating disc hypoxia and complete nutrient deprived combined microenvironment in accelerating degenerate changes in NP cells. In contrast, these conditions showed no such detrimental effects on BM-MSC gene and protein expression. pH 6.5 was critical for both cell types proliferation and ACAN and VCAN gene expression suggesting that severe acidic conditions may exacerbate degenerative changes and be inhibitory for implanted MSCs. Finally, a combination of hypoxia, complete nutrient deprived and moderate acidic conditions, reduced cell proliferation without affecting the gene expression profile of both cell types. IVD-like physio-chemical microenvironmental conditions also appeared to influence differentiation of BM-MSC and modulation of degenerate NP cell phenotype observed during co-culture. Noticeably hypoxia, reduced serum or reduced glucose conditions stimulated BM-MSC differentiation and modulation of degenerate NP cell phenotype. Hypoxia also increased or recovered changes at gene expression level in both BM-MSCs and degenerate NP cells under nutrient deprived (reduced serum or/and reduced glucose) conditions during co-culture. Degenerate NP cell and BM-MSC co-culture also showed noticeable increase in aggrecan and versican biosynthesis under hypoxia and reduced glucose combine conditions, implicating these in improving the co-culture responses. Severe pH condition alone, pH 6.8 in combination with hypoxia and finally all IVD-like physio-chemical conditions together compromised co-culture responses. Such results imply that IVD-like physio-chemical microenvironmental conditions may influence MSC based regenerative outcomes. This work has increased our understanding about the influence of disc harsh microenvironment on degeneration and regeneration processes.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:607090
Date January 2013
CreatorsKhan, Shahnaz
ContributorsHoyland, Judith; Richardson, Stephen
PublisherUniversity of Manchester
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttps://www.research.manchester.ac.uk/portal/en/theses/the-effect-of-the-intervertebral-disc-microenvironment-on-disc-cell-and-mesenchymal-stem-cell-behaviour-implications-for-disc-degeneration-and-regeneration(b5629a75-4cb0-45d8-affb-2b936d9408e1).html

Page generated in 0.0012 seconds