L'imagerie par résonance magnétique de diffusion (IRMd) a fait une percée significative dans les troubles neurologiques et les recherches sur le cerveau grâce à son extraordinaire sensibilité à la cytoarchitecture des tissus. Cependant, comme le processus de diffusion de l'eau dans les tissus neuronaux est un phénomène biophysique complexe à l'échelle moléculaire, il est difficile d'en déduire les caractéristiques microscopiques des tissus à l'échelle du voxel, à partir des données d'IRMd. La contribution méthodologique majeure de cette thèse est le développement d'un cadre de simulation de type Monte Carlo intégré et générique, appelé `Diffusion Microscopist Simulator' (DMS), qui permet d'élaborer des modèles de tissus biologiques tridimensionnels aux géométries et propriétés variées et qui permet de synthétiser des données d'IRMd correspondantes pour une grande variété d'IRM, de séquences d'impulsions et de paramètres. L'outil DMS vise à combler le fossé entre les processus de diffusion élémentaires, qui se produisent à une échelle micrométrique, et le signal de diffusion résultant, mesuré à l'échelle millimétrique, qui offre un meilleur aperçu des caractéristiques observées dans l'IRMd, tout en offrant une information vérité terrain pour l'optimisation et la validation des protocoles d'acquisition de l'IRMd pour différentes applications.Nous avons vérifié les performances et la validité du simulateur à travers différents tests, et appliqué cet outil pour aborder des thèmes de recherche particuliers à l'IRMd. Il y a deux contributions majeures dans cette thèse. Tout d'abord, nous avons utilisé l'outil DMS pour étudier l'impact de la durée d'impulsions de gradient de diffusion finies (delta) sur l'estimation de l'orientation des fibres par l'IRMd. Nous avons démontré que la pratique actuelle qui utilise un delta long, imposée par la limitation physique des scanners d'IRM cliniques, est en fait bénéfique pour la cartographie des orientations des fibres, même si elle viole l'hypothèse sous-jacente faite dans la théorie de l'espace q. Deuxièmement, nous avons employé le simulateur pour étudier la possibilité d'estimer le rayon des axones en utilisant un système d'IRM clinique. Les résultats suggèrent que la technique d'inférence de la taille des axones reposant sur un modèle analytique de la réponse IRM d'un axone au processus de diffusion est applicable aux données d'IRMd acquises avec des scanners IRM standards. / Diffusion magnetic resonance imaging (dMRI) has made a significant breakthrough in neurological disorders and brain research thanks to its exquisite sensitivity to tissue cytoarchitecture. However, as the water diffusion process in neuronal tissues is a complex biophysical phenomena at molecular scale, it is difficult to infer tissue microscopic characteristics on a voxel scale from dMRI data. The major methodological contribution of this thesis is the development of an integrated and generic Monte Carlo simulation framework, ‘Diffusion Microscopist Simulator' (DMS), which has the capacity to create 3D biological tissue models of various shapes and properties, as well as to synthesize dMRI data for a large variety of MRI methods, pulse sequence design and parameters. DMS aims at bridging the gap between the elementary diffusion processes occurring at a micrometric scale and the resulting diffusion signal measured at millimetric scale, providing better insights into the features observed in dMRI, as well as offering ground-truth information for optimization and validation of dMRI acquisition protocols for different applications.We have verified the performance and validity of DMS through various benchmark experiments, and applied to address particular research topics in dMRI. Based on DMS, there are two major application contributions in this thesis. First, we use DMS to investigate the impact of finite diffusion gradient pulse duration (delta) on fibre orientation estimation in dMRI. We propose that current practice of using long delta, which is enforced by the hardware limitation of clinical MRI scanners, is actually beneficial for mapping fibre orientations, even though it violates the underlying assumption made in q-space theory. Second, we employ DMS to investigate the feasibility of estimating axon radius using a clinical MRI system. The results suggest that the algorithm for mapping the direct microstructures is applicable to dMRI data acquired from standard MRI scanners.
Identifer | oai:union.ndltd.org:theses.fr/2011PA112177 |
Date | 28 September 2011 |
Creators | Yeh, Chun hung |
Contributors | Paris 11, National Yang-Ming University (Taiwan), Poupon, Cyril, Ling, Ching-Po |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text, Image |
Page generated in 0.0022 seconds