Thesis (M.A.)--Boston University / PLEASE NOTE: Boston University Libraries did not receive an Authorization To Manage form for this thesis or dissertation. It is therefore not openly accessible, though it may be available by request. If you are the author or principal advisor of this work and would like to request open access for it, please contact us at open-help@bu.edu. Thank you. / In work reported by Lichtin, Rosenberg, and Imamuras it was found that water added before irradiation of aerated methanol had a surprising effect on peroxide yields. In the absence of water, no hydrogen peroxide was produced during radiolysis, but in the presence of about 0.5 weight-percent water the yield of peroxide increased abruptly from zero to a plateau G value of 2.8.
Attempts to reproduce these data were unsuccessful, however, and it was discovered that the observed effect of water on hydrogen peroxide yields is post-radiolytic in nature. Identical peroxide yields were produced during radiolysis of both dry methanol samples and samples to which water was added before radiolysis. In the dry samples, however, hydrogen peroxide was found to decompose with approximately first-order kinetics. Addition of water subsequent to irradiation inhibited decay. No significant change was noted in the concentration of radiolytically-generated formaldehyde during the period of peroxide decay.
The average G(H2o2), obtained by extrapolation of the decomposition curve of radiolytically-generated hydrogen peroxide in dry methanol back to the time of the removal ofthe sample from the 60Co source, was 3.28 + 0.12. Half-decay times varied widely due to the variable dryness of the methanol.
It was found that solutions of non-radiolytic hydrogen peroxide in dry methanol likewise underwent first-order decay. The rate of decomposition in these solutions could be accelerated by an increase in temperature or by subsequent radiolysis. The addition of formaldehyde was also found to accelerate peroxide decomposition, although no significant change was noted in the formaldehyde concentration.
Methyl hydroperoxide was tentatively identified as a radiation product with a G value of about 0.2. Analysis of a radiolytic sample in which hydrogen peroxide had decomposed completely indicated that methyl hydroperoxide had not undergone similar decay.
The nature of the hydrogen peroxide decomposition process is still unknown. Speculation concerning the decay inhibiting effect of water has been developed from several points of view: medium effects, specific interactions, and the possible effects of impurity.
Influences of added sulfuric acid and methyl borate on radiolytic peroxide yields were also studied briefly. / 2031-01-01
Identifer | oai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/33593 |
Date | January 1964 |
Creators | Wilson, Judith Walker |
Publisher | Boston University |
Source Sets | Boston University |
Language | en_US |
Detected Language | English |
Type | Thesis/Dissertation |
Page generated in 0.0018 seconds