A reproducible model of global cerebral ischemia in mice is essential for elucidating the molecular mechanism(s) of neuronal damage induced by cerebral ischemia/reperfusion injury. In the present study, we developed a mouse model of transient global ischemia induced by occlusion of the bilateral common carotid arteries and the left subclavian artery together with right subclavian artery (RSA) stenosis (CSOSS) under controlled ventilation in C57BL/10ScSn mice. The mean arterial blood pressure was maintained in the physiological range. The cortical cerebral blood flow was reduced to less than 10% of the pre-ischemic value. Twelve minutes of global ischemia induced brain damage in several brain structures. The neuropathological score in the hippocampus CA1 region was 1.7, 3.5 and 3.7 following reperfusion for 24, 48 and 72 h, respectively. Less extensive damage was seen in the dentate gyrus and cortical regions, compared with the CA1 region. Damage was observed in these regions 24 h after ischemia and was not different between 48 and 72 h post-ischemia. Results indicated that this global ischemia model possessed several advantages, including reproducible cerebral ischemic insult, sufficient reperfusion and low mortality rate (10%), and could be used for studies on cerebral ischemia/reperfusion injury in mice.
Identifer | oai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etsu-works-19431 |
Date | 29 May 2006 |
Creators | Hua, Fang, Ma, Jing, Li, Yan, Ha, Tuanzhu, Xia, Yeling, Kelley, Jim, Williams, David L., Browder, I. William, Schweitzer, John B., Li, Chuanfu |
Publisher | Digital Commons @ East Tennessee State University |
Source Sets | East Tennessee State University |
Detected Language | English |
Type | text |
Source | ETSU Faculty Works |
Page generated in 0.0014 seconds