Le quench d'un système magnétique d'ITER est une transition irréversible d'un conducteur, de l'état supraconducteur à l'état normal résistif. Cette zone normale se propage le long du câble au cours du temps, en dissipant une grande quantité d'énergie. La détection se doit d'être suffisamment rapide afin de permettre une décharge de l'énergie magnétique et éviter un endommagement permanent du système. La détection primaire de quench d'ITER est basée sur la détection de la tension due au quench, qui est le moyen le plus rapide. L'environnement magnétique perturbé pendant le scenario plasma rend la détection de cette tension très difficile, à cause des hautes tensions inductives qu'il génère dans les bobinages. En conséquence, des compensations de tension sont nécessaires afin de discriminer la tension résistive due au quench.Une solution conceptuelle de la détection de quench basée sur la mesure des tensions est proposée pour les trois grands systèmes magnétiques d'ITER. Pour ceci, une méthodologie claire est développée, incluant le calcul classique selon le critère du point chaud, l'étude de la propagation de quench grâce au code commercial Gandalf, et l'estimation des perturbations inductives, grâce au développement du code TrapsAV. Des solutions adaptées sont proposée pour ces systèmes ainsi que les paramètres de cette détection, qui sont le seuil de détection (entre 0.1 V et 0.55 V) et le temps de discrimination (entre 1 s et 1.2 s). Les valeurs choisies, et en particulier le temps de discrimination, sont suffisamment élevées pour garantir la fiabilité du système, et pour éviter le déclenchement intempestif de décharges rapides non nécessaires. / The quench of one of the ITER magnet system is an irreversible transition from superconducting to normal resistive state, of a conductor. This normal zone propagates along the cable in conduit conductor dissipating a large power. The detection has to be fast enough to dump out the magnetic energy and avoid irreversible damage of the systems. The primary quench detection in ITER is based on voltage detection which is the most rapid detection. The very magnetically disturbed environment during the plasma scenario, makes the voltage detection particularly difficult, inducing large inductive components in the coils and voltage compensations have to be designed to discriminate the resistive voltage associated with the quench. A conceptual design of the quench detection based on voltage measurements is proposed for the three majors magnet systems of ITER. For this, a clear methodology was developed. It includes the classical hot spot criterion, the quench propagation study using the commercial code Gandalf and the careful estimation of the inductive disturbances by developing the TrapsAV code.Specific solutions have been proposed for the compensation in the three ITER magnet systems and for the quench detection parameters which are the voltage threshold (in the range of 0.1 V- 0.55 V) and the holding time (in the range of 1 -1.4 s). The selected values, in particular the holding time, are sufficiently high to ensure the reliability of the system and avoid fast safety discharges not induced by a quench which is a classical problem.
Identifer | oai:union.ndltd.org:theses.fr/2012AIXM4739 |
Date | 15 February 2012 |
Creators | Coatanea-gouachet, Marc |
Contributors | Aix-Marseille, Topin, Frédéric |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0033 seconds