Return to search

Effects of contaminants on Austrovenus stutchburyi - using biomarkers to detect sublethal stress

This thesis examines sublethal stress responses in the common New Zealand estuarine bivalve, Austrovenus stutchburyi (cockle). The approach used throughout this thesis is a refinement of the biological indicator approach of Adams (1990), in which biomarker data are collected primarily at the individual and sub-organismal levels, but with additional measurements at the population and community levels. In this research several biochemical and physiological biomarkers are used to assess effects of contaminants on energetics, fecundity and growth of cockles. Adenylate energy charge (AEC) and total adenylate nucleotide pool (TANP) are biomarkers that have previously not been used with A. stutchburyi, and provide new information on energy cycling for this species. RNA concentration has also not previously been used with cockles, and this biomarker is correlated with growth. Glycogen concentration and condition indices are used to indicate reproductive potential and overall health. In order to fully investigate the utility of this comprehensive suite of biomarkers, their performance in laboratory and field situations was tested. Temporal variability in AEC, TANP and glycogen was analysed over two years for two populations of cockles in a northern harbour. The results indicated seasonal patterns for all biomarkers, with AEC reaching a maximum value in spring, TANP being lowest in winter, and glycogen concentration being high over spring and summer. Variability in biomarker response between cockles sampled at low tide and high tide was analysed in a laboratory experiment simulating exposure to air during low tide. Adenylate energy charge was found to be significantly lower in cockles after exposure to air for 4 hours, highlighting the importance of standardised collection protocols. These initial patterns, as well as spatial variability in biomarker response, were further investigated at several sites within a second harbour south of Auckland. There was little among site difference in glycogen concentration, and the data suggested that differences in site characteristics, such as sediment quality and type, were driving the mixed response patterns of AEC, TANP and condition. Because of inherent variability in field conditions, a series of laboratory experiments was then undertaken to assess responses under carefully controlled conditions. Cockles were challenged with PAHs, chlordane and tributyltin at two different doses, and biomarker response (AEC, TANP, glycogen and RNA) measured. One trial examined the effects of a one-off pulse of contaminant, in which sediment containing cockles was dosed at the outset of a 14-day experiment with a high concentration of contaminant. A daily dose of this same concentration of contaminant was supplied to the sediment for 14 days in a second trial to assess effects of a more continuous discharge. There were virtually no significant differences in biomarker response between treatments and controls for either trial, suggesting that the experimental setup may have been causing sublethal stress in some way. Finally, in order to maximise experimental control whilst maintaining environmental realism, a manipulative field experiment was undertaken in which cockles were transplanted from an uncontaminated site to a series of uncontaminated and contaminated sites in one of Auckland's major harbours. Biomarker response (AEC, TANP, glycogen and RNA) was measured in the transplanted and the autochthonous populations two weeks and eight weeks after transplantation. An ability to regulate adenylate nucleotides was detected, as cockles transplanted to contaminated sites had reduced TANP but maintained AEC levels. There were significant differences in glycogen and RNA among sites, with highest levels detected in cockles transplanted to an uncontaminated site. This suite of biomarkers showed great utility for use in environmental quality assessment. It is recommended that an approach such as that used in the Mussel Watch programme in the United States be employed for cockles, in order to monitor estuarine ecosystem health in New Zealand. The transplantation of cockles to estuaries where there are concerns about environmental quality, and the use of TANP, glycogen and RNA concentration to assess sublethal stress, has potential as a sensitive and cost-effective environmental monitoring technique for estuaries in New Zealand.

Identiferoai:union.ndltd.org:ADTP/247031
Date January 2000
CreatorsDe Luca-Abbott, Sharon B.
PublisherResearchSpace@Auckland
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
RightsItems in ResearchSpace are protected by copyright, with all rights reserved, unless otherwise indicated., http://researchspace.auckland.ac.nz/docs/uoa-docs/rights.htm, Copyright: The author

Page generated in 0.0017 seconds