Differential-algebraic equations (DAEs) form the natural way in which models of physical systems are delivered from an object-oriented modeling tool like Modelica. Differential-algebraic equations are also known as descriptor systems, singular systems, and implicit systems. If some constant parameters in such models are unknown, one might need to estimate them from measured data from the modeled system. This is a form of system identification called gray box identification. It may also be of interest to estimate the value of time-varying variables in the model. This is often referred to as state estimation. The objective of this work is to examine how gray box identification and estimation of time-varying variables can be performed for models described by differential-algebraic equations. If a model has external stimuli that are not measured or uncertain measurements, it is often appropriate to model this as stochastic processes. This is called noise modeling. Noise modeling is an important part of system identification and state estimation, so we examine how well-posedness of noise models for differential-algebraic equations can be characterized. For well-posed models, we then discuss how particle filters can be implemented for estimation of time-varying variables. We also discuss how constant parameters can be estimated. When estimating time-varying variables, it is of interest to examine if the problem is observable, that is, if it has a unique solution. The corresponding property when estimating constant parameters is identifiability. In this thesis, we discuss how observability and identifiability can be determined for DAEs. We propose three approaches, where one can be seen as an extension of standard methods for state-space systems based on rank tests. For linear DAEs, a more detailed analysis is performed. We use some well-known canonical forms to examine well-posedness of noise models and to implement estimation of time-varying variables and constant parameters. This includes formulation of Kalman filters for linear DAE models. To be able to implement the suggested methods, we show how the canonical forms can be computed using numerical software from the linear algebra package LAPACK.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-7600 |
Date | January 2006 |
Creators | Gerdin, Markus |
Publisher | Linköpings universitet, Reglerteknik, Linköpings universitet, Tekniska högskolan, Institutionen för systemteknik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, monograph, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Linköping Studies in Science and Technology. Dissertations, 0345-7524 ; 1046 |
Page generated in 0.0022 seconds