Orientador: Fernando Jose Von Zuben / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-11T13:03:57Z (GMT). No. of bitstreams: 1
Bezerra_GeorgeBarretoPereira_M.pdf: 1423598 bytes, checksum: 5587c3941203fcdd6c2eddb7dad89a93 (MD5)
Previous issue date: 2006 / Resumo: Esta dissertação trata das redes gênicas, o mecanismo de controle da ativação dos genes nas células, sob três perspectivas computacionais diferentes. Inicialmente, sob uma ótica de engenharia, é elaborada uma ferramenta de inferência de redes gênicas, capaz de reconstruir a estrutura estática dessas redes a partir de um conjunto de dados experimentais. O método
proposto para essa tarefa de identificação de sistemas é especialmente projetado para conjunto de dados reduzidos, um cenário bastante comum quando se trata de dados de expressão gênica. Numa segunda etapa, é proposto um modelo computacional das redes
gênicas, em que as reações bioquímicas que ocorrem na célula são vistas como equações não-lineares arranjadas numa estrutura conexionista. Desta vez, ao invés de inferir redes existentes, esse modelo é utilizado em conjunto com uma abordagem evolutiva para
sintetizar redes gênicas artificiais capazes de realizar tarefas dinâmicas ¿ em específico, para solucionar um problema clássico de robótica evolutiva. Embora o modelo seja empregado como técnica de resolução de problemas, o objetivo agora é mais no sentido
científico, isto é, as redes gênicas artificiais evoluídas são analisadas como modelos que podem ajudar a compreender propriedades observadas nos sistemas naturais. Finalmente, a terceira etapa consiste numa abordagem conceitual. O propósito principal é tentar compor um novo cenário para o estudo das redes gênicas, reunindo conceitos e dados empíricos de outras áreas da ciência moderna, como a neurociência e a sinergética, e investigando as implicações de uma nova ótica para o processamento de informação celular. O objetivo aqui é voltado para a compreensão dos mecanismos de processamento de informação em organismos vivos / Abstract: This dissertation deals with genetic networks, the mechanism of control of gene activity in cells, under three different computational perspectives. Initially, as an engineering approach, a computational tool for inference of genetic networks is proposed, which is able to recover the static structure of these networks from experimental datasets. This systems identification method is especially designed for small datasets, a common scenario when coping with gene expression data. In the second step, a computational model for genetic networks is proposed, in which biochemical reactions that occur inside the cell are treated as nonlinear equations in a connectionist structure. Rather than inferring networks from data, this model is used together with an evolutionary algorithm to synthesize artificial genetic networks that are able to solve dynamic tasks ¿ and in particilar, to solve a classic problem in evolutionary robotics. Although the model is used as a problem-solving technique, the objective here is primarily scientific, i.e., the evolved artificial genetic networks are viewed as an opportunity to study properties observed in natural systems.
Finally, the third step comprises a conceptual approach, in which ideas from other fields of modern science, like neuroscience and synergetics, are put together to compose a new scenario to the study of the information processing in genetic networks / Mestrado / Engenharia de Computação / Mestre em Engenharia Elétrica
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.unicamp.br:REPOSIP/259068 |
Date | 31 July 2006 |
Creators | Bezerra, George Barreto Pereira |
Contributors | UNIVERSIDADE ESTADUAL DE CAMPINAS, Von Zuben, Fernando José, 1968-, Zuben, Fernando Jose Von, Souza, Gustavo Maia, Netto, Marcio Luiz de Andrade, Mendes, Rafael Santos |
Publisher | [s.n.], Universidade Estadual de Campinas. Faculdade de Engenharia Elétrica e de Computação, Programa de Pós-Graduação em Engenharia Elétrica |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | 155p. : il., application/pdf |
Source | reponame:Repositório Institucional da Unicamp, instname:Universidade Estadual de Campinas, instacron:UNICAMP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0024 seconds