<p>In this thesis it is examined whether the pose of an object can be determined by a system trained with a synthetic 3D model of said object. A number of variations of methods using P-channel representation are examined. Reference images are rendered from the 3D model, features, such as gradient orientation and color information are extracted and encoded into P-channels. The P-channel representation is then used to estimate an overlapping channel representation, using B<sub>1</sub>-spline functions, to estimate a density function for the feature set. Experiments were conducted with this representation as well as the raw P-channel representation in conjunction with a number of distance measures and estimation methods.</p><p>It is shown that, with correct preprocessing and choice of parameters, the pose can be detected with some accuracy and, if not in real-time, fast enough to be useful in a tracker initialization scenario. It is also concluded that the success rate of the estimation depends heavily on the nature of the object.</p>
Identifer | oai:union.ndltd.org:UPSALLA/oai:DiVA.org:liu-11080 |
Date | January 2008 |
Creators | Berg, Martin |
Publisher | Linköping University, Department of Electrical Engineering, Institutionen för systemteknik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, text |
Page generated in 0.0024 seconds